CAREER: Algorithms for Unsupervised Learning
职业:无监督学习算法
基本信息
- 批准号:0347646
- 负责人:
- 金额:$ 50.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-02-15 至 2010-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research is to develop algorithms with rigorous performance guarantees for core machine learning tasks. Although the most common guarantee in the current literature is that of local optimality in the solution space, this project aims to use stronger performance criteria, such as quantitative bounds on the ratio by which the cost of the learned solution exceeds that of the global optimum, both to guide the development of new algorithms and to compare existing ones. This project will focus on two canonical unsupervised learning tasks: hierarchical clustering and learning the structure of directed probabilistic (Bayesian) nets. Both models are already in widespread use for analyzing massive data sets; better algorithms will increase their effectiveness and reliability, and will involve technical tools that are likely to be of broader use for other machine learning and statistical tasks. The results of this research project will be integrated into a new course that focuses on algorithmic aspects of machine learning; the resulting educational materials will be made available to the academic community.
这项研究的目标是为核心机器学习任务开发具有严格性能保证的算法。虽然在目前的文献中最常见的保证是局部最优的解决方案空间中,这个项目的目的是使用更强的性能标准,如量化的比例上的界限,其中学习的解决方案的成本超过了全球最优,既指导新算法的发展,并比较现有的。该项目将专注于两个规范的无监督学习任务:层次聚类和学习有向概率(贝叶斯)网的结构。这两种模型已经广泛用于分析海量数据集;更好的算法将提高其有效性和可靠性,并将涉及可能更广泛用于其他机器学习和统计任务的技术工具。该研究项目的成果将被纳入一门新课程,重点是机器学习的算法方面;由此产生的教育材料将提供给学术界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjoy Dasgupta其他文献
Title: a Different Approach to Sensor Networking for Shm: Remote Powering and Interrogation with Unmanned Aerial Vehicles
标题:SHM 传感器网络的不同方法:无人机远程供电和询问
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
T. Rosing;Daniele Musiani;Sanjoy Dasgupta;Samori Kpotufe;Daniel Hsu;Rajesh Gupta;Gyuhae Park;M. Nothnagel;C. Farrar - 通讯作者:
C. Farrar
Sanjoy Dasgupta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjoy Dasgupta', 18)}}的其他基金
Collaborative Research: IIS: RI: Medium: Lifelong learning with hyper dimensional computing
协作研究:IIS:RI:中:超维计算的终身学习
- 批准号:
2211386 - 财政年份:2022
- 资助金额:
$ 50.28万 - 项目类别:
Standard Grant
CCF-BSF: AF: Small: Algorithms for Interactive Learning
CCF-BSF:AF:小型:交互式学习算法
- 批准号:
1813160 - 财政年份:2018
- 资助金额:
$ 50.28万 - 项目类别:
Standard Grant
RI: Foundations of Active Learning
RI:主动学习的基础
- 批准号:
0713540 - 财政年份:2007
- 资助金额:
$ 50.28万 - 项目类别:
Continuing Grant
相似海外基金
Functional annotation of pan-genomes with unsupervised genome segmentation algorithms
使用无监督基因组分割算法对泛基因组进行功能注释
- 批准号:
569429-2022 - 财政年份:2022
- 资助金额:
$ 50.28万 - 项目类别:
Postgraduate Scholarships - Doctoral
Collaborative Research: CIF: Medium: Taming Deep Unsupervised Representation Learning in Imaging: Theory and Algorithms
合作研究:CIF:媒介:驯服成像中的深度无监督表示学习:理论和算法
- 批准号:
2212065 - 财政年份:2022
- 资助金额:
$ 50.28万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Taming Deep Unsupervised Representation Learning in Imaging: Theory and Algorithms
合作研究:CIF:媒介:驯服成像中的深度无监督表示学习:理论和算法
- 批准号:
2212066 - 财政年份:2022
- 资助金额:
$ 50.28万 - 项目类别:
Continuing Grant
Last Mile Logistics and the Shared Economy: Developing dynamic vehicle routing algorithms that adopt unsupervised learning for novel last-mile initiat
最后一英里物流和共享经济:开发动态车辆路线算法,采用无监督学习来实现新颖的最后一英里启动
- 批准号:
2579363 - 财政年份:2021
- 资助金额:
$ 50.28万 - 项目类别:
Studentship
Variational Methods for the Analysis of Unsupervised Learning Algorithms
无监督学习算法分析的变分方法
- 批准号:
2005797 - 财政年份:2020
- 资助金额:
$ 50.28万 - 项目类别:
Continuing Grant
EAGER: Novel sampling algorithms for scaling up spectral methods for unsupervised learning
EAGER:用于扩大无监督学习光谱方法的新型采样算法
- 批准号:
1650080 - 财政年份:2016
- 资助金额:
$ 50.28万 - 项目类别:
Standard Grant
Optimizing plant settings using genetic algorithms, unsupervised and supervised learning
使用遗传算法、无监督和监督学习优化工厂设置
- 批准号:
483751-2015 - 财政年份:2015
- 资助金额:
$ 50.28万 - 项目类别:
University Undergraduate Student Research Awards
Designing unsupervised machine learning algorithms to explore user behaviour patterns for online games
设计无监督机器学习算法来探索在线游戏的用户行为模式
- 批准号:
484343-2015 - 财政年份:2015
- 资助金额:
$ 50.28万 - 项目类别:
Engage Grants Program
SHB: Type I (EXP): Algorithms for Unsupervised and Online Learning of Hierarchy of Features for Tuning Cochlear Implants for the Hearing Impaired
SHB:I 型(EXP):用于调整听力障碍者人工耳蜗的特征层次结构的无监督和在线学习算法
- 批准号:
1231620 - 财政年份:2013
- 资助金额:
$ 50.28万 - 项目类别:
Standard Grant
Unsupervised learning algorithms for neural networks and nonlinear dimensionality reduction
神经网络和非线性降维的无监督学习算法
- 批准号:
334607-2006 - 财政年份:2008
- 资助金额:
$ 50.28万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral