RI: Foundations of Active Learning
RI:主动学习的基础
基本信息
- 批准号:0713540
- 负责人:
- 金额:$ 42.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal 0713540"RI: Foundations of Active Learning"PI: Sanjoy DasguptaUniversity of California-San DiegoABSTRACTThe goal of this project is to characterize several important problems in active learning from a theoretical perspective. Active learning is a kind of machine learning, a key aspect of Robust Intelligence. A central aim of machine learning is to develop techniques that construct models of data in order to help make predictions in future situations. The past decades have seen huge advances in machine learning that uses labeled data. However, labels are often difficult to obtain. Active learning addresses situations in which the data are unlabeled, and any labels must be explicitly requested and paid for. The aim of active learning is to learn a good classifier with as few labels as possible. Despite its practical importance, active learning is a comparatively underdeveloped area in machine learning.This project will rigorously investigate the potential of intelligent querying, and develop practical, label-efficient learning algorithms. It will bring together a diversity of student talent, from theoreticians to domain experts in biology and vision applications. The resulting algorithms will be made widely available, and have the potential to increase the applicability of machine learning to the many large-scale problems in which difficulty of labeling is a critical bottleneck.
提案0713540“RI:主动学习的基础”PI:SanJoy Dasgupta加州大学圣迭戈分校这个项目的目标是从理论的角度描述主动学习中的几个重要问题。主动学习是机器学习的一种,是鲁棒智能的一个重要方面。机器学习的一个中心目标是开发构建数据模型的技术,以帮助在未来情况下做出预测。在过去的几十年里,使用标签数据的机器学习取得了巨大的进步。然而,标签往往很难获得。主动学习解决了数据没有标签的情况,任何标签都必须明确要求并支付费用。主动学习的目的是用尽可能少的标签学习一个好的分类器。尽管主动学习具有重要的实用价值,但它在机器学习中是一个相对不发达的领域。该项目将严格研究智能查询的潜力,并开发实用的、标签高效的学习算法。它将汇集各种各样的学生才华,从理论家到生物学和视觉应用领域的专家。由此产生的算法将被广泛使用,并有可能增加机器学习对许多大规模问题的适用性,其中标记的困难是一个关键的瓶颈。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjoy Dasgupta其他文献
Title: a Different Approach to Sensor Networking for Shm: Remote Powering and Interrogation with Unmanned Aerial Vehicles
标题:SHM 传感器网络的不同方法:无人机远程供电和询问
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
T. Rosing;Daniele Musiani;Sanjoy Dasgupta;Samori Kpotufe;Daniel Hsu;Rajesh Gupta;Gyuhae Park;M. Nothnagel;C. Farrar - 通讯作者:
C. Farrar
Sanjoy Dasgupta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjoy Dasgupta', 18)}}的其他基金
Collaborative Research: IIS: RI: Medium: Lifelong learning with hyper dimensional computing
协作研究:IIS:RI:中:超维计算的终身学习
- 批准号:
2211386 - 财政年份:2022
- 资助金额:
$ 42.86万 - 项目类别:
Standard Grant
CCF-BSF: AF: Small: Algorithms for Interactive Learning
CCF-BSF:AF:小型:交互式学习算法
- 批准号:
1813160 - 财政年份:2018
- 资助金额:
$ 42.86万 - 项目类别:
Standard Grant
CAREER: Algorithms for Unsupervised Learning
职业:无监督学习算法
- 批准号:
0347646 - 财政年份:2004
- 资助金额:
$ 42.86万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Continuing Grant
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Standard Grant
Social Foundations of Cryptography
密码学的社会基础
- 批准号:
EP/X017524/1 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Research Grant
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
- 批准号:
EP/Y028872/1 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
- 批准号:
EP/Z531327/1 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Research Grant
Social foundations of cryptography
密码学的社会基础
- 批准号:
EP/X016226/1 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Research Grant
Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
- 批准号:
MR/X023583/1 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Fellowship
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Continuing Grant