FRG: Collaborative Research in Semiclassical Asymptotic Questions in Integrable Nonlinear Wave Theory
FRG:可积非线性波理论中半经典渐近问题的合作研究
基本信息
- 批准号:0354462
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract DMS-0354373 FRG: Collaborative Research in Semiclassical Asymptotic Questions in Integrable Nonlinear Wave Theory Peter Miller, Kenneth McLaughlin and Jared BronskiThe goal of applied mathematics is the study of equations of scientific,engineering or industrial interest in a mathematically rigorous way.Understanding such equations often requires consideringa limit in which certain parameters approach zero. Whilesome of these problems behave in a predictable manner in thelimit, other interesting and important problems involve unstablebehavior that becomes less and less predictable the smaller theparameter of interest becomes. One of the best illustrations of thisconcept is the behavior of fluid flows when the viscous drag is small,and the fluid behaves in a turbulent and chaotic way.The primary model under study in this project is the nonlinearSchrodinger equation, which is a fundamental model for the study ofpulses in optical fibers. The small parameter limit for thismodel corresponds to the limit of ultra-short pulse propagation, whichis expected to find many applications to high-speed telecommunications.This limit is known as the semiclassical limit.This project constitutes an in-depth study of initial-value problemsfor several partial differential equations (PDEs) in the semiclassicallimit. Existing formal theories fail because they lead to model problems that areill-posed and thus make no prediction at all for reasonable initialconditions. The goal of this project is to develop asymptotictheories that are not based on any particular ansatz and do notrequire unphysical conditions on the initial data. Among the problemsunder attack is the rigorous semiclassical analysis of the focusingnonlinear Schroedinger equation for general data, a problem that isgenerally considered to be one of the most important open problems inthe field of integrable systems. The specific aims of the projectinclude the development of new ansatz-free methods of asymptoticanalysis --- for spectral theory and for Riemann-Hilbert problems ofinverse-scattering theory --- that are insensitive to analyticityproperties of the initial data, and have a "nonlinearRiemann-Lebesgue" character, directly exploiting cancellation due tooscillations where analytic deformations are impossible. Thesetechniques, once developed, will also have important repercussions infields that are only tangentially related, for example, the theory oforthogonal polynomials of large degree and the statistical analysis oflarge random matrices.The main goal of the proposed work is to develop predictive tools thatapply to extremely unstable systems when the initial conditionsare rough or noisy. An example of such a system is the one governing thepropagation of ultrashort data pulses in certain optical fibers, andtherefor any new insights into such systems will have repercussionsin the field of telecommunications. Some of the problems we propose tostudy admit a detailed analysis because they are idealized and can in somesense be solved exactly; however our work is also expected to lead to generalmethods that are applicable to less idealized systems.These techniques will also have important implications in mathematicalfields that are only tangentially related, for example, the theory oforthogonal polynomials of large degree and the statistical analysis oflarge random matrices.This project also has an important educationalaspect. We plan to involve both graduate students and postdoctoral researchers inthis work, and the advanced training of the next generation of researchersis an important component of this proposal. We also plan aninterdisciplinary workshop to further disseminate the results of this work beyond theboundaries of the mathematical community.
DMS-0354373 FRG:可积非线性波动理论中半经典渐近问题的合作研究彼得·米勒、肯尼斯·麦克劳克林和贾里德·布朗斯基应用数学的目标是以严格的数学方式研究科学、工程或工业中感兴趣的方程。理解这类方程通常需要考虑某些参数接近于零的极限。虽然这些问题中的一些问题在有限的范围内表现为可预测的方式,但其他有趣和重要的问题涉及不稳定的行为,随着兴趣参数变得越来越小,这种行为变得越来越不可预测。这一概念最好的说明之一是当粘性阻力很小时,流体的流动行为是以湍流和混沌的方式进行的。本项目研究的主要模型是非线性薛定谔方程,它是研究光纤中脉冲的基本模型。这个模型的小参数极限对应于超短脉冲传播的极限,它有望在高速通信中得到许多应用。这个极限被称为半经典极限。这个项目构成了对几个偏微分方程(PDE)在半经典极限下初值问题的深入研究。现有的形式化理论之所以失败,是因为它们导致了不适定的模型问题,因此根本没有对合理的初始条件进行预测。这个项目的目标是发展渐近理论,这些理论不是基于任何特定的ansatz,也不需要对初始数据的非物理条件。在被攻击的问题中,是对一般数据的聚焦的非线性薛定谔方程的严格的半经典分析,这个问题通常被认为是可积系统领域中最重要的开放问题之一。该项目的具体目标包括发展新的无偏差的渐近分析方法-用于频谱理论和反向散射理论的Riemann-Hilbert问题-这些方法对初始数据的分析性质不敏感,并具有“非线性Riemann-Lebesgue”特征,直接利用不可能发生解析变形的振荡引起的抵消。这些技术一旦开发出来,也将在只与切线相关的领域产生重要影响,例如高次二次多项式理论和大型随机矩阵的统计分析。拟议工作的主要目标是开发适用于初始条件粗糙或噪声时的极不稳定系统的预测工具。这种系统的一个例子是管理超短数据脉冲在某些光纤中的传播的系统,因此,对这种系统的任何新见解都将在电信领域产生影响。我们打算研究的一些问题允许进行详细的分析,因为它们是理想化的,在某种意义上可以得到精确的解决;然而,我们的工作也有望导致适用于较不理想的系统的一般方法。这些技术在只与切线相关的数学领域也将有重要的意义,例如高次正方多项式的理论和大随机矩阵的统计分析。本项目还具有重要的教育意义。我们计划让研究生和博士后研究人员参与这项工作,而对下一代研究人员的高级培训是这项建议的重要组成部分。我们还计划举办一次跨学科研讨会,以进一步将这项工作的成果传播到数学界之外。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jared Bronski其他文献
Jared Bronski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jared Bronski', 18)}}的其他基金
Stability, Instability and Geometry in Applied Spectral Problems.
应用光谱问题中的稳定性、不稳定性和几何。
- 批准号:
1615418 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
Eigenvalues, geometry and instability in conservative models in applied mathematics.
应用数学保守模型中的特征值、几何和不稳定性。
- 批准号:
1211364 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Eigenvalue and Stability Problems in Applied Mathematics
应用数学中的特征值和稳定性问题
- 批准号:
0807584 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9407473 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Fellowship Award
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant