Randomness in Waves and Fluids

波浪和流体的随机性

基本信息

  • 批准号:
    9972869
  • 负责人:
  • 金额:
    $ 8.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-06-01 至 2002-05-31
  • 项目状态:
    已结题

项目摘要

This project addresses a number of problems in the general area of nonlinear wave propagation. Most of the problems considered are attempts to assess the effects of random inhomogeneities in the medium of propagation on nonlinear structures such as solitons. In the case of linear media, it is well known that the effect of random inhomogeneities is to inhibit the propagation of waves, an effect known as Anderson localization. The proposer will study the competition between the effect of the inhomogeneities, which tend to destroy a localized pulse such as a soliton, with the effect of nonlinearity,which acts to hold a pulse together. In earlier work he found interesting and complicated behavior, with different ``phases'' in which one effect or the other is dominant. He will also begin a project involving the application of some of the tools of wave propagtion, most importantly the Feynman path integral, to problems of the transport of a passive scalar, such as a dye or tracer, by a fluid flow. The kind of problems addressed in this project are best illustrated by one important application, that of laser light propagating in an optical fiber. Very intense light in an optical fiber has the somewhat surprising property that it can interact with itself, and can actually focusitself. This process of self-focusing leads to the formation of bright spots, called solitons, which propagate along the fiber without changing shape. These solitons are of great interest due to the possibility of using them as the basis for optical communications systems. This project studies how these kinds of structures are effected by variations in the fiber properties. The fundamental question is this: Do these solitons persist when the properties of the fiber are allowed to vary, or are they destroyed?
该项目解决了非线性波传播一般领域的一些问题。考虑的大多数问题是试图评估传播介质中的随机非均匀性对非线性结构(如孤子)的影响。在线性介质的情况下,众所周知,随机不均匀性的影响是抑制波的传播,这种效应被称为安德森局域化。该提议将研究非均匀性的影响与非线性的影响之间的竞争,非均匀性往往会破坏局部脉冲,如孤子,而非线性的作用是使脉冲保持在一起。在早期的工作中,他发现了有趣而复杂的行为,具有不同的“阶段”,其中一种效果或另一种效果占主导地位。他还将开始一个项目,涉及一些波传播工具的应用,最重要的是费曼路径积分,用于解决无源标量的输运问题,如染料或示踪剂,通过流体流动。在这个项目中解决的问题,最好地说明了一个重要的应用,激光在光纤中传播。光纤中的强光有一个令人惊讶的特性,它可以与自身相互作用,并且可以聚焦自己。这种自聚焦的过程导致了被称为孤子的亮点的形成,这些亮点沿着光纤传播而不改变形状。这些孤子非常有趣,因为它们有可能用作光通信系统的基础。本项目研究这些结构如何受到纤维性能变化的影响。最根本的问题是:当光纤的特性发生变化时,这些孤子是否会持续存在,还是会被破坏?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jared Bronski其他文献

Jared Bronski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jared Bronski', 18)}}的其他基金

Stability, Instability and Geometry in Applied Spectral Problems.
应用光谱问题中的稳定性、不稳定性和几何。
  • 批准号:
    1615418
  • 财政年份:
    2016
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Continuing Grant
Eigenvalues, geometry and instability in conservative models in applied mathematics.
应用数学保守模型中的特征值、几何和不稳定性。
  • 批准号:
    1211364
  • 财政年份:
    2012
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
Eigenvalue and Stability Problems in Applied Mathematics
应用数学中的特征值和稳定性问题
  • 批准号:
    0807584
  • 财政年份:
    2008
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research in Semiclassical Asymptotic Questions in Integrable Nonlinear Wave Theory
FRG:可积非线性波理论中半经典渐近问题的合作研究
  • 批准号:
    0354462
  • 财政年份:
    2004
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
Randomness in Fluids and Waves
流体和波浪的随机性
  • 批准号:
    0203938
  • 财政年份:
    2002
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9407473
  • 财政年份:
    1994
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Fellowship Award

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Mathematical Modelling of Nonlinear Ring Waves of Moderate Amplitude in Fluids
流体中中等幅度非线性环波的数学模型
  • 批准号:
    2458723
  • 财政年份:
    2020
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Studentship
Basic study on shock waves with extreme pressure in supercritical fluids generated by pulsed arc discharge
脉冲电弧放电超临界流体极压冲击波的基础研究
  • 批准号:
    19K14966
  • 财政年份:
    2019
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Nonlinear Waves in Fluids
流体中的非线性波
  • 批准号:
    1908947
  • 财政年份:
    2019
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: Point of Care Biosensor for Quantification of Biomarkers in Bodily Fluids Based on Surface Acoustic Waves
PFI:AIR - TT:基于表面声波对体液中生物标志物进行定量的护理点生物传感器
  • 批准号:
    1640668
  • 财政年份:
    2016
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
Dynamics of inviscid fluids and nonlinear waves
无粘流体动力学和非线性波
  • 批准号:
    1362507
  • 财政年份:
    2014
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Continuing Grant
Waves in fluids and solids
流体和固体中的波
  • 批准号:
    9117-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear waves in fluids, optics and plasmas
流体、光学和等离子体中的非线性波
  • 批准号:
    46179-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental Studies of the Thermoacoustic Effect: Interactions of Acoustic Waves with Viscous Fluids
热声效应的基础研究:声波与粘性流体的相互作用
  • 批准号:
    0853959
  • 财政年份:
    2009
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Conservation Laws, Simple Waves and Mixing in Stratified Fluids
合作研究:守恒定律、简单波和分层流体中的混合
  • 批准号:
    0908252
  • 财政年份:
    2009
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
Waves in fluids and solids
流体和固体中的波
  • 批准号:
    9117-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了