FRG: Collaborative Research: Heat Equations and Geometric Flows in Riemannian and Kaehler Geometry
FRG:合作研究:黎曼几何和凯勒几何中的热方程和几何流
基本信息
- 批准号:0354540
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We propose to further developments related to Perelman's work on the Geometrization Conjecture, using Ricci flow through the space-time formulation, new gradient estimates and monotone quantities and their geometric applications, and to apply new techniques and applications based on the ideas of these methods and estimates with the aim of furthering the understanding of the following interconnected topics: 1. Uniformization of compact and noncompact Kahler manifolds, combining Kahler-Ricci flow and the study of holomorphic functions/sections. 2. Analysis of singularities, formulation of weak solutions, and flow past singularities for geometric evolution equations and the duality between the Ricci flow and the mean curvature flow. 3. Study of harmonic/holomorphic functions, function theory, spectrum and the geometry of complete Riemannian/Kahler manifolds. 4. Existence of Einstein and other canonical Riemannian metrics on manifolds. Geometric evolution equations are powerful and central tools in the study of the global geometry and topology of manifolds. Recent work of Perelman on Hamilton's program for Ricci flow and its applications towards a possible solution to the Poincare and geometrization conjectures provides a timely and promising opportunity for a group effort on significant advancements in geometric analysis and related areas. The results from the project should lead to new advances in and connections between string/duality theory and renormalization group flow, Ricci flow, mean curvature flow and other geometric evolution equations, and may enhance the understanding of the homogeneity of the universe at large scales, as well as other areas in science. The project will enhance the understanding of geometric analysis, linear and nonlinear partial differential equations, algebraic geometry and mathematical physics.
我们建议进一步发展Perelman关于几何化猜想的工作,通过时空公式使用里奇流,新的梯度估计和单调量及其几何应用,并基于这些方法和估计的思想应用新的技术和应用,以进一步理解以下相互关联的主题:1。紧致与非紧致Kahler流形的均匀化,结合Kahler- ricci流与全纯函数/截面的研究。2. 几何演化方程的奇点分析、弱解的公式、流过奇点及Ricci流与平均曲率流的对偶性。3. 调和/全纯函数的研究,函数理论,谱和完全黎曼/卡勒流形的几何。4. 流形上爱因斯坦和其他正则黎曼度量的存在性。几何演化方程是研究流形整体几何和拓扑的重要工具。佩雷尔曼最近关于汉密尔顿的里奇流计划的工作,以及它对庞加莱猜想和几何化猜想的可能解决方案的应用,为在几何分析和相关领域取得重大进展的小组努力提供了及时和有希望的机会。该项目的结果将导致弦/对偶理论与重整化群流、Ricci流、平均曲率流和其他几何演化方程之间的新进展和联系,并可能增强对大尺度宇宙均匀性的理解,以及其他科学领域。该项目将加强对几何分析、线性和非线性偏微分方程、代数几何和数学物理的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bennet Chow其他文献
Bennet Chow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bennet Chow', 18)}}的其他基金
Analytic and Geometric Aspects of Ricci Flow
里奇流的解析和几何方面
- 批准号:
0505507 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
Southern California Geometric Analysis Seminar
南加州几何分析研讨会
- 批准号:
0406078 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
Analytic and Geometric Aspects of Ricci Flow
里奇流的解析和几何方面
- 批准号:
0203926 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
ANALYTIC AND GEOMETRIC ASPECTS OF RICCI FLOW
RICCI 流的分析和几何方面
- 批准号:
0196123 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
ANALYTIC AND GEOMETRIC ASPECTS OF RICCI FLOW
RICCI 流的分析和几何方面
- 批准号:
9971891 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Evolution of Curves, Surfaces, and Manifolds
数学科学:曲线、曲面和流形的几何演化
- 批准号:
9626685 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8807253 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Fellowship Award
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant