FRG: Collaborative Research: The Four-Color Theorem and Beyond
FRG:协作研究:四色定理及其他
基本信息
- 批准号:0354554
- 负责人:
- 金额:$ 20.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT for FRG award DMS-035472, DMS-0354465 and DMS-0354554 of Thomas, Seymour and RobertsonWe propose to study the four-colour problem and its extensions. The four-colour problemitself was proposed as a conjecture in the the mid-19th century, and remained open forover 120 years, until it was settled by Appel and Haken in 1977. That period coincidedwith the birth of graph theory as a serious subject, and graph theory grew up aroundthe various attempts to settle the four-colour problem. The problem lives right at theheart of modern graph theory, and still is not properly understood.In particular, the proof by Appel and Haken used a computer, and for a mathematiciantrying to understand what makes a result true, this is not acceptable; it may beconvincing evidence that the result is true, but it is not helpful for understanding.We already found our own proof (joint with Sanders), and our proof is simpler and more easily checked than the Appel-Haken proof, but it too uses a computer. We plan to redesign the proof to reduce the dependence on computers as far as we can.There are a number of proposed extensions of the four-colour theorem, mostly still open.For instance, there is Hadwiger's conjecture of 1943 that every graph that cannot be coloured with k colours can be contracted to a complete graph on k+1 vertices. For k = 1,2,3this is easy, and when k = 4 this is equivalent to the four-colour problem; and we proved thatit is also true for k = 5. We would like to extend this to higher values of k.There are a number of other extensions of the four-colour problem, detailed in the proposal itself; for instance Tutte's 4-flow conjecture, the odd minor conjecture, and Grotsch's conjecture.
摘要针对托马斯、Seymour和Robertson的FRG奖DMS-035472、DMS-0354465和DMS-0354554,我们提出研究四色问题及其扩展。四色问题本身在世纪中期作为一个猜想被提出,并持续了120多年,直到1977年由阿佩尔和哈肯解决。这一时期恰逢图论作为一门严肃学科的诞生,而图论则是围绕着解决四色问题的各种尝试而发展起来的。这一问题是现代图论的核心,至今仍未得到正确的理解。特别是阿佩尔和哈肯的证明使用了计算机,对于一个试图理解是什么使结果为真的数学家来说,这是不可接受的;这可能是证明结果正确的有力证据,但对理解没有帮助。我们已经找到了自己的证明(与Sanders联合),我们的证明比Appel-Haken证明更简单,更容易检查,但它也使用计算机。我们计划重新设计证明,以尽可能减少对计算机的依赖。四色定理有许多被提出的扩展,大多数仍然开放。例如,Hadwiger的猜想1943年,每个不能用k种颜色着色的图可以收缩为k+1个顶点的完全图。对于k = 1,2,3,这是容易的,当k = 4时,这等价于四色问题;我们证明了k = 5时也是如此。我们想把它扩展到更高的k值。四色问题还有一些其他的扩展,在提案本身中有详细说明;例如Tutte的4流猜想,奇未成年人猜想,和Grotsch的猜想。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Robertson其他文献
Paraneoplastic sensory neuropathy and Purkinje cell antibodies
副肿瘤性感觉神经病和浦肯野细胞抗体
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:3.4
- 作者:
Brian Mc Namara;S. Boniface;J. Ray;N. Scolding;Neil Robertson - 通讯作者:
Neil Robertson
On the detection of low-resolution skin regions in surveillance images
监控图像中低分辨率皮肤区域的检测
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
N. Janssen;Neil Robertson - 通讯作者:
Neil Robertson
A role for the complement alternative pathway in the pathology of multiple sclerosis grey matter lesions
- DOI:
10.1016/j.jneuroim.2014.08.335 - 发表时间:
2014-10-15 - 期刊:
- 影响因子:
- 作者:
Lewis M. Watkins;Samantha Loveless;James Neal;Mark I. Rees;Neil Robertson;Richard Reynolds;B. Paul Morgan;Owain W. Howell - 通讯作者:
Owain W. Howell
Progress on perfect graphs
- DOI:
10.1007/s10107-003-0449-8 - 发表时间:
2003-07-01 - 期刊:
- 影响因子:2.500
- 作者:
Maria Chudnovsky;Neil Robertson;P. D. Seymour;Robin Thomas - 通讯作者:
Robin Thomas
The T-cell receptor beta locus and susceptibility to multiple sclerosis
T 细胞受体 β 位点与多发性硬化症的易感性
- DOI:
10.1212/wnl.45.10.1859 - 发表时间:
1995 - 期刊:
- 影响因子:9.9
- 作者:
N. Wood;S. Sawcer;H. Kellar;P. Holmans;David G. Clayton;Neil Robertson;D. Compston - 通讯作者:
D. Compston
Neil Robertson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Robertson', 18)}}的其他基金
Cheap Solar Electricity - The Essential Fuel of the 21st Century
廉价的太阳能电力 - 21 世纪的基本燃料
- 批准号:
EP/H047441/1 - 财政年份:2010
- 资助金额:
$ 20.83万 - 项目类别:
Research Grant
Radical New Materials for Electronics
电子行业的激进新材料
- 批准号:
EP/G049726/1 - 财政年份:2009
- 资助金额:
$ 20.83万 - 项目类别:
Research Grant
Photophysical Strategies and Novel NIR Dyes for Optimisation of Luminescent Solar Concentrators
用于优化发光太阳能聚光器的光物理策略和新型近红外染料
- 批准号:
EP/F02732X/1 - 财政年份:2007
- 资助金额:
$ 20.83万 - 项目类别:
Research Grant
Structure Theory for Graphs and Matroids
图和矩阵的结构理论
- 批准号:
0071096 - 财政年份:2000
- 资助金额:
$ 20.83万 - 项目类别:
Continuing Grant
Mathematical Sciences: Graph Minor Structure Theory
数学科学:图小结构理论
- 批准号:
9401981 - 财政年份:1994
- 资助金额:
$ 20.83万 - 项目类别:
Continuing grant
Mathematical Sciences: Extensions of the Graph-Minor Project
数学科学:小图项目的扩展
- 批准号:
8903132 - 财政年份:1989
- 资助金额:
$ 20.83万 - 项目类别:
Continuing grant
Mathematical Sciences: Problems Related to Graph Well-Quasi Ordering
数学科学:与图井拟序相关的问题
- 批准号:
8504054 - 财政年份:1985
- 资助金额:
$ 20.83万 - 项目类别:
Continuing grant
Mathematical Sciences: Graph Minors and Embedding Structures
数学科学:图次要和嵌入结构
- 批准号:
8302266 - 财政年份:1983
- 资助金额:
$ 20.83万 - 项目类别:
Continuing grant
Structure Theorems For Graphs and Matroids and Discrete Optimization
图和拟阵的结构定理以及离散优化
- 批准号:
8103440 - 财政年份:1981
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 20.83万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 20.83万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 20.83万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 20.83万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 20.83万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 20.83万 - 项目类别:
Continuing Grant














{{item.name}}会员




