Problems in Graph Structure Theory
图结构理论中的问题
基本信息
- 批准号:9701317
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Robertson 9701317 This award will provide funds to develop several projects in structural graph theory associated with the graph minor relation. Much of the work involves ongoing joint projects with Paul Seymour, Robin Thomas and others; and the research of graduate students supervised by the principal investigator. The main topics of this proposal are summarized below. These topics cover a large part of graph structure theory as it relates to the graph minor inclusion relation. In fact, each topic contains major problems, often well known and difficult, and so significant progress in any direction is likely to absorb a great deal of time. There are at present serious attacks (which our group welcomes) being made on many of these problems elsewhere in the graph theoretical community. The main topics are as follows: (1) To continue the attack on the open problems in explicit finite graph minor structure. (2) To continue the attack on the open problems in general finite graph minor structure. (3) To attack coloring problems made accessible by the improved proof of the four-color theorem and structure theory results. (4) To continue to study connectivity at the levels exhibited by the graphs of the Platonic solids and the toroidal regular lattices; in particular chains of minors or types of minors at a given level. (5) To continue to detelop surface embedding structure theory by studying questions about how nontrivial closed curves on the surface meet an embedded graph. (6) To extend graph minor theory to binary matroids. (7) To attack some problems in algorithmical graph theory and matroid theory. This research is in the general area of Combinatorics. One of the goals of Combinatorics is to find efficient methods of studying how discrete collections of objects can be arranged. The behavior of discrete systems is extremely important to modern communications. For example, the design of large networks, such as those occurring in telephone systems, and the d esign of algorithms in computer science deal with discrete sets of objects, and this makes use of combinatorial research.
Robertson 9701317 该奖项将为开发与图次关系相关的结构图论中的几个项目提供资金。大部分工作涉及与 Paul Seymour、Robin Thomas 等人正在进行的联合项目;以及由首席研究员指导的研究生研究。该提案的主要主题概述如下。这些主题涵盖了图结构理论的很大一部分,因为它与图次包含关系相关。事实上,每个主题都包含重大问题,通常是众所周知的和困难的,因此任何方向的重大进展都可能会占用大量时间。目前,图论社区的其他地方正在对许多此类问题进行严重的攻击(我们的小组对此表示欢迎)。主要研究内容如下: (1)继续攻克显式有限图次结构中的开放问题。 (2)继续攻克一般有限图次结构中的开放问题。 (3)解决通过改进四色定理和结构理论结果的证明而解决的着色问题。 (4)继续研究柏拉图多面体和环形正则晶格图所展示的水平上的连通性;特别是特定级别的未成年人链或未成年人类型。 (5)通过研究曲面上的非平凡闭合曲线如何满足嵌入图的问题,继续发展曲面嵌入结构理论。 (6) 将图次要理论扩展到二元拟阵。 (7)攻克算法图论和拟阵理论中的一些问题。这项研究属于组合学的一般领域。组合学的目标之一是找到研究如何排列离散对象集合的有效方法。离散系统的行为对于现代通信极其重要。例如,大型网络的设计(例如电话系统中的网络)以及计算机科学中处理离散对象集的算法设计,都利用了组合研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Robertson其他文献
Paraneoplastic sensory neuropathy and Purkinje cell antibodies
副肿瘤性感觉神经病和浦肯野细胞抗体
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:3.4
- 作者:
Brian Mc Namara;S. Boniface;J. Ray;N. Scolding;Neil Robertson - 通讯作者:
Neil Robertson
On the detection of low-resolution skin regions in surveillance images
监控图像中低分辨率皮肤区域的检测
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
N. Janssen;Neil Robertson - 通讯作者:
Neil Robertson
A role for the complement alternative pathway in the pathology of multiple sclerosis grey matter lesions
- DOI:
10.1016/j.jneuroim.2014.08.335 - 发表时间:
2014-10-15 - 期刊:
- 影响因子:
- 作者:
Lewis M. Watkins;Samantha Loveless;James Neal;Mark I. Rees;Neil Robertson;Richard Reynolds;B. Paul Morgan;Owain W. Howell - 通讯作者:
Owain W. Howell
Progress on perfect graphs
- DOI:
10.1007/s10107-003-0449-8 - 发表时间:
2003-07-01 - 期刊:
- 影响因子:2.500
- 作者:
Maria Chudnovsky;Neil Robertson;P. D. Seymour;Robin Thomas - 通讯作者:
Robin Thomas
Electron-donating strength dependent symmetry breaking charge transfer dynamics of quadrupolar molecules
电子供给强度依赖的对称性破坏四极分子的电荷转移动力学
- DOI:
10.1039/d0cp02527e - 发表时间:
2020 - 期刊:
- 影响因子:3.3
- 作者:
Xinmiao Niu;Zhuoran Kuang;Miquel Planells;Yuanyuan Guo;Neil Robertson;Andong Xia - 通讯作者:
Andong Xia
Neil Robertson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Robertson', 18)}}的其他基金
Cheap Solar Electricity - The Essential Fuel of the 21st Century
廉价的太阳能电力 - 21 世纪的基本燃料
- 批准号:
EP/H047441/1 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grant
Radical New Materials for Electronics
电子行业的激进新材料
- 批准号:
EP/G049726/1 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grant
Photophysical Strategies and Novel NIR Dyes for Optimisation of Luminescent Solar Concentrators
用于优化发光太阳能聚光器的光物理策略和新型近红外染料
- 批准号:
EP/F02732X/1 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grant
FRG: Collaborative Research: The Four-Color Theorem and Beyond
FRG:协作研究:四色定理及其他
- 批准号:
0354554 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Graph Minor Structure Theory
数学科学:图小结构理论
- 批准号:
9401981 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Extensions of the Graph-Minor Project
数学科学:小图项目的扩展
- 批准号:
8903132 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Problems Related to Graph Well-Quasi Ordering
数学科学:与图井拟序相关的问题
- 批准号:
8504054 - 财政年份:1985
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Graph Minors and Embedding Structures
数学科学:图次要和嵌入结构
- 批准号:
8302266 - 财政年份:1983
- 资助金额:
-- - 项目类别:
Continuing grant
Structure Theorems For Graphs and Matroids and Discrete Optimization
图和拟阵的结构定理以及离散优化
- 批准号:
8103440 - 财政年份:1981
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
基于Graph-PINN的层结稳定度参数化建模与沙尘跨介质耦合传输模拟研
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
平面三角剖分flip graph的强凸性研究
- 批准号:12301432
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于graph的多对比度磁共振图像重建方法
- 批准号:61901188
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
基于de bruijn graph梳理的宏基因组拼接算法开发
- 批准号:61771009
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Graph和ISA的红外目标分割与识别方法研究
- 批准号:61101246
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
中国Web Graph的挖掘与应用研究
- 批准号:60473122
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CIF: Small: Graph Structure Discovery of Networked Dynamical Systems
CIF:小:网络动力系统的图结构发现
- 批准号:
2327905 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Research on Graph Coloring and Graph Structure
图着色与图结构研究
- 批准号:
2348702 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Taking the structure of proteins into account: predicting if infections are resistant to B-lactam antibiotics using graph-based convolutional neural n
考虑蛋白质的结构:使用基于图的卷积神经网络预测感染是否对 B-内酰胺抗生素具有耐药性
- 批准号:
2886022 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Semiclassical distribution of quantum resonances and graph structure of classical trapped trajectories
量子共振的半经典分布和经典俘获轨迹的图结构
- 批准号:
22KJ2364 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Graph Structure and Applications
图结构及应用
- 批准号:
RGPIN-2022-04432 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Characterization of network structure in random graph models and neural data
随机图模型和神经数据中网络结构的表征
- 批准号:
574654-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
DMS-EPRSC: Induced Subgraphs and Graph Structure
DMS-EPRSC:归纳子图和图结构
- 批准号:
2154169 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: III: Structure-aware Graph Compressing: From Algorithms to Applications
CRII:III:结构感知图压缩:从算法到应用程序
- 批准号:
2308206 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
DMS-EPSRC INDUCED SUBGRAPHS AND GRAPH STRUCTURE
DMS-EPSRC 导出的子图和图结构
- 批准号:
EP/X013642/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
DMS-EPSRC - The Power of Graph Structure
DMS-EPSRC - 图结构的力量
- 批准号:
EP/V002813/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




