Collaborative Research: FRG: Applications of Multiple Dirichlet Series to Analytic Number Theory
合作研究:FRG:多重狄利克雷级数在解析数论中的应用
基本信息
- 批准号:0354582
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-15 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for Collaborative FRG proposals DMS- 0354534, DMS -0353964, DMS-0354662 and DMS-0354582 of Hoffstein, Bump Friedberg and GoldfeldThe object of this proposal is to continue todevelop the theory of multiple Dirichlet seriesalong a number of highly promising directions.These include the formulation of aclassification theory via Dynkin diagrams andmetaplectic forms, analysis of naturalconstructions as inner products of automorphic forms on GL(n),and investigating examples coming fromEisenstein series related to deformation theoryof universal elliptic curves. Manyapplications are expected to the analysis of various familiesof L-functions The theory of L-functions of one complex variable iscentral in modern number theory. Special values ofL-functions have provided links between such diverseareas of mathematics as algebraic geometry, topology,probability and statistics, the representation theory ofinfinite dimensional Lie groups, and mathematicalphysics. In contrast, the theory of L-functions ofseveral complex variables (multipleDirichlet series) is still in its infancy. A large part of thefoundational theory was developedby the PI's and Postdocs of this proposal, who havebeen collaborating in teams, over thelast twenty years. The accumulated scientific results,combined with a mass sustained joint effort of thePI's, now point to the possibility of major breakthroughs.There is also an additionaltraining component. Workshops will be held each yearas well as short courses aimed at attracting graduate students, postdocs, andmathematicians in related fields. The motivationwill be to categorize and advertisethe major accessible problems in the field, tomap out progress made, and to prepare theparticipants for research projects.
Hoffstein、Bump Friedberg和Goldstein的联邦德国合作提案DMS-0354534、DMS-0353964、DMS-0354662和DMS-0354582摘要该提案的目的是沿着一些非常有前途的方向继续发展多重狄利克雷级数的理论。这些方向包括通过Dynkin图和元形式来表述分类理论,分析了GL(n)上自守形式的内积的自然结构,并研究了与泛椭圆曲线变形理论相关的爱森斯坦级数的例子。L-函数在分析各种L-函数族中有着广泛的应用。单复变L-函数理论是现代数论的核心。L-函数的特殊值为代数几何、拓扑学、概率和统计、有限维李群的表示论和物理学等不同的数学领域提供了联系。相比之下,多复变量L-函数(多重狄利克雷级数)的理论仍处于起步阶段。基础理论的很大一部分是由该提案的PI和博士后开发的,他们在过去的二十年里一直在团队合作。积累的科学成果,再加上PI的大规模持续的共同努力,现在指向了重大突破的可能性。 每年将举办研讨会以及旨在吸引毕业生的短期课程 students学生,postdocs博士后,andmathematicians数学家in related相关fields领域.动机是对该领域的主要问题进行分类和分析,绘制出所取得的进展,并为参与者的研究项目做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dorian Goldfeld其他文献
The functional equations of Langlands Eisenstein series for SL(n, ℤ)
- DOI:
10.1007/s11425-023-2213-y - 发表时间:
2023-10-16 - 期刊:
- 影响因子:1.500
- 作者:
Dorian Goldfeld;Eric Stade;Michael Woodbury - 通讯作者:
Michael Woodbury
Dorian Goldfeld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dorian Goldfeld', 18)}}的其他基金
Analytic Number Theory and its Applications, July 14-18, 2014
解析数论及其应用,2014 年 7 月 14-18 日
- 批准号:
1403383 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Automorphic forms, representations and L-functions
合作研究:自同构形式、表示和 L 函数
- 批准号:
1001036 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: EMSW21-RTG: JOINT COLUMBIA-CUNY-NYU RESEARCH TRAINING GROUP IN NUMBER THEORY
合作研究:EMSW21-RTG:哥伦比亚大学-纽约市立大学-纽约大学联合数论研究培训小组
- 批准号:
0739400 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Combinatorial representation theory, multiple Dirichlet series and moments of L-functions
FRG:协作研究:组合表示理论、多重狄利克雷级数和 L 函数矩
- 批准号:
0652554 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Joint COLUMBIA-CUNY-NYU Number Theory Seminar
哥伦比亚大学-纽约市立大学-纽约大学联合数论研讨会
- 批准号:
0312270 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Analytic Number Theory on Groups
数学科学:群的解析数论
- 批准号:
9505584 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Analytic Number Theory on Groups
数学科学:群的解析数论
- 批准号:
9200716 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Analytic Number Theory on Elliptic Curves
数学科学:椭圆曲线的解析数论
- 批准号:
9003907 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant