Mathematical Problems in Quantum Information Theory
量子信息论中的数学问题
基本信息
- 批准号:0400426
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary goal of the proposed research in this project is todevelop the mathematical tools needed to prove several outstanding conjecturesin Quantum Information Theory. The central conjecture states thatminimal output entropy is additive for product channels, where a channelis the mathematical representation of a noisy quantum system. Themathematical setting concerns properties ofcompletely positive maps on matrix algebras. Building on results andmethods fromearlier work, the PI expects to establish this conjecture for allqubit maps, and in the process develop tools that will apply to higherdimensionalmaps. The PI expects to produce results that are both mathematicallyinterestingand also useful for quantum information theory.Quantum Information Theory is concerned with exploring the new resources thatare available in physical systems whose behavior is wholly or partlygoverned byquantum effects, for example single-atom systems and single-photon states.Recent theoreticaldiscoveriesindicate that such systems may have extraordinary properties. One exampleis the quantum computer, which is a theoretical device capable ofoutperforming any standard computer. Another example is a protocol forunconditionally secure encryption, which would be achieved by encodingmessages as quantum states. Mathematics has played an essential role in thedevelopment of these new ideas. The present proposal is aimed at usingadvanced mathematical techniques to explore the implications ofusing entangled quantum states in communication systems.A fundamental problem is to determine theinformation capacity of such a system, and thereby find the quantum analogof Shannon's famous expression for the capacity of a noisy channel.The broader impact of the proposed activity rests on the potentialapplications ofquantum information theory in physics and computer science, and ultimately intechnology.
在这个项目中,拟议研究的主要目标是开发所需的数学工具来证明量子信息理论中的几个杰出的假设。中心猜想指出最小输出熵对于乘积通道是可加的,其中通道是噪声量子系统的数学表示。数学设定涉及矩阵代数上完全正映射的性质。基于早期工作的结果和方法,PI希望为所有量子比特映射建立这种猜想,并在此过程中开发适用于更高维映射的工具。PI期望产生既有趣又对量子信息理论有用的结果。量子信息理论关注于探索物理系统中可用的新资源,这些系统的行为全部或部分由量子效应控制,例如单原子系统和单光子状态。最近的理论计算表明,这样的系统可能具有非凡的特性。一个例子是量子计算机,这是一种理论上的设备,能够超越任何标准计算机。另一个例子是无条件安全加密的协议,它可以通过将信息编码为量子态来实现。数学在这些新思想的发展中起着重要的作用。目前的建议旨在利用先进的数学技术来探索在通信系统中使用纠缠量子态的含义。一个基本问题是确定这样一个系统的信息容量,从而找到香农关于噪声信道容量的著名表达式的量子类比。拟议活动的更广泛影响在于量子信息理论在物理学和计算机科学中的潜在应用,and ultimately最终intechnology技术.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher King其他文献
HIGHER DONOR PAO2/FIO2 RATIO APPEARS TO BE ASSOCIATED WITH INCREASED INCIDENCE OF PRIMARY GRAFT DYSFUNCTION IN LUNG TRANSPLANT RECIPIENTS
- DOI:
10.1016/j.chest.2020.08.2035 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Vikramjit Khangoora;Christopher King;Oksana Shlobin;Anne Brown;Shambhu Aryal;Kareem Ahmad;Steven Nathan - 通讯作者:
Steven Nathan
SAT-542 Macrophage Dvl2-HSF1 axis regulates STING-mediated innate immunity and hepatocyte death in liver ischemia and reperfusion injury
- DOI:
10.1016/s0168-8278(24)01184-x - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Tao Yang;Dongwei Xu;Xiaoye Qu;Mingwei Sheng;Yuanbang Lin;Xiao Wang;Christopher King;Jun Li;Longfeng Jiang;Qiang Xia;Douglas Farmer;Bibo Ke - 通讯作者:
Bibo Ke
A Provider-Based Quality Improvement Intervention Aimed at Increasing Appropriateness of Radiation Therapy Regimens for Patients with Advanced Cancer and Painful Bone Metastases (TH320A)
- DOI:
10.1016/j.jpainsymman.2016.12.046 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:
- 作者:
Anne Walling;Phil Beron;Neil Wenger;Tania Kaprealian;Susie McCloskey;Christopher King;Kris Murrell-Diedric - 通讯作者:
Kris Murrell-Diedric
AN UNCOMMON CAUSE OF HEART FAILURE: ACROMEGALIC CARDIOMYOPATHY CULMINATING IN ORTHOTOPIC HEART TRANSPLANTATION
- DOI:
10.1016/s0735-1097(23)03640-9 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Aditya Dewanjee;Danny Rayes;Moemen Eltelbany;Jamie Kennedy;Anika Raja;Behnam Nonahal Tehrani;Palak Shah;Shashank Desai;Edward William Howard;Daniel Giunway Tang;Ramesh Singh;Christopher King;Hala Moukhachen;Mitchell Psotka;Karl D. Young;Shashank S. Sinha;Raghav Gattani - 通讯作者:
Raghav Gattani
Standardized Protocols to Improve the Management of Distal Perfusion and Vascular Access Site Bleeding for Patients on Venoarterial Extracorporeal Membrane Oxygenation
用于改善静脉 - 动脉体外膜肺氧合患者远端灌注和血管通路部位出血管理的标准化方案
- DOI:
10.1016/j.jvs.2025.03.139 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:3.600
- 作者:
Paul W. White;Michelle Ferri;Cristina M. Visco;Carolyn Rosner;Patrick Moran;Robert Markie;Ramesh Singh;Sara Valenti;Christopher King;Alan Speir;Kendal Endicott;Richard Neville - 通讯作者:
Richard Neville
Christopher King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher King', 18)}}的其他基金
City of caves - regenerating the heart of Nottingham through 'hidden heritage'
洞穴之城——通过“隐藏遗产”重建诺丁汉市中心
- 批准号:
AH/W008653/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Additivity Problems in Quantum Information Theory
量子信息论中的可加性问题
- 批准号:
0101205 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Problems in Statistical Mechanics and Quantum Theory
统计力学和量子理论中的数学问题
- 批准号:
9705779 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing grant
相似海外基金
Mathematical problems in quantum entanglement theory
量子纠缠理论中的数学问题
- 批准号:
571742-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Mathematical problems in quantum field theory and infinite dimensional analysis
量子场论和无限维分析中的数学问题
- 批准号:
15K04888 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical problems in quantum error correction
量子纠错中的数学问题
- 批准号:
466961-2014 - 财政年份:2014
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Mathematical Problems and Infinite Dimensional Analysis in Quantum Field Theory
量子场论中的数学问题和无限维分析
- 批准号:
17340032 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fractal transforms, inverse problems, mathematical imaging, bohmian quantum mechanics
分形变换、反问题、数学成像、波姆量子力学
- 批准号:
106270-2001 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Fractal transforms, inverse problems, mathematical imaging, bohmian quantum mechanics
分形变换、反问题、数学成像、波姆量子力学
- 批准号:
106270-2001 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Methodological, mathematical and computation problems of quantum chemistry
量子化学的方法论、数学和计算问题
- 批准号:
5501-2001 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Fractal transforms, inverse problems, mathematical imaging, bohmian quantum mechanics
分形变换、反问题、数学成像、波姆量子力学
- 批准号:
106270-2001 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Methodological, mathematical and computation problems of quantum chemistry
量子化学的方法论、数学和计算问题
- 批准号:
5501-2001 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Mathematical Problems from Geometric/Topological Quantum Field Theories
几何/拓扑量子场论的数学问题
- 批准号:
0201683 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant