Automating Combinatorics

自动化组合学

基本信息

  • 批准号:
    0401124
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

Doron Zeilberger proposes to continue to developmethodologies for harnessing the great potential ofComputer Algebra to do research in Combinatorics andrelated areas, and design experiments for (rigorous)computer-assisted and computer-generated research.In particular he hopes to develop a new algorithmic theoryto be named `Symbolic Moment Calculus', that would producealgorithms for computing, symbolically and automatically, (statistical) moments of interesting combinatorial quantities.He also plans to develop a general theory of recurrence equationsthat would include both the `Dynamic Programming' recurrencesfeaturing the maximum, ubiquitous in Computational Biology,and the mex operation, that occurs in the theory ofCombinatorial Games.He also proposes to continue hisefforts in `Artificial Combinatorics', and develop algorithmsfor the discovery and rigorous proof of enumeration schemes for counting permutation classes, and for automatically deducing generating functions. Anotherline of research concerns automatic determinant evaluationsthat has potential applications in applied mathematics andscience.This research should be symbiotic, as it isexpected that both the concrete results and the underlying methodologies, would help computer algebra developersto improve and enhance their systems. It is also hoped thatthis research will contribute to the budding field of ExperimentalMathematics, in that it will help develop a research methodology forconducting computer experiments that output rigorous (and interesting!) mathematical theorems(and proofs), rather than just verifying and formulating conjectures.This research is in the field of Combinatorics, whose usefulnessto science and technology is well-known. In particular, computerscience is largely based on combinatorics, as is electroniccommunication and the World Wide Web.
Doron Zeilberger建议继续开发利用计算机代数的巨大潜力进行组合学及相关领域研究的方法,并设计实验,(严格的)计算机辅助和计算机生成的研究。特别是他希望开发一种新的算法理论被命名为“符号矩演算”,这将产生计算算法,符号化和自动化,有趣的组合量的(统计)时刻。他还计划开发一个递归方程的一般理论,该理论将包括计算生物学中普遍存在的最大值的“动态规划”递归,以及mex运算,这发生在组合博弈理论中。他还建议继续他在“人工组合学”中的研究,并开发算法来发现和严格证明用于计数置换类的枚举方案,以及自动推导生成函数。另一个研究方向是自动行列式求值,它在应用数学和科学中有潜在的应用。这项研究应该是共生的,因为它的具体结果和基本方法都有望帮助计算机代数开发者改进和增强他们的系统。也希望这项研究将有助于实验数学的萌芽领域,因为它将有助于开发一种研究方法,用于进行计算机实验,输出严格(和有趣!)数学定理(和证明),而不仅仅是验证和公式化。这项研究是在组合数学领域,其有用的科学和技术是众所周知的。特别是,计算机科学在很大程度上是基于组合学,电子通信和万维网也是如此。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Doron Zeilberger其他文献

Theorems for a price: tomorrow’s semi-rigorous mathematical culture
  • DOI:
    10.1007/bf03024696
  • 发表时间:
    2009-01-10
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Doron Zeilberger;George E. Andrews
  • 通讯作者:
    George E. Andrews
D.H. Lehmer’s Tridiagonal Determinant: An Étude in (Andrews-Inspired) Experimental Mathematics
  • DOI:
    10.1007/s00026-019-00441-y
  • 发表时间:
    2019-10-14
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Shalosh B. Ekhad;Doron Zeilberger
  • 通讯作者:
    Doron Zeilberger
Symbolic Moment Calculus I: Foundations and Permutation Pattern Statistics
  • DOI:
    10.1007/s00026-004-0226-2
  • 发表时间:
    2004-08-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Doron Zeilberger
  • 通讯作者:
    Doron Zeilberger
Tweaking the Beukers integrals in search of more miraculous irrationality proofs a la Apéry
  • DOI:
    10.1007/s11139-021-00523-7
  • 发表时间:
    2022-03-03
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Robert Dougherty-Bliss;Christoph Koutschan;Doron Zeilberger
  • 通讯作者:
    Doron Zeilberger
A Simple Rederivation of Onsager’s Solution of the 2D Ising Model Using Experimental Mathematics
  • DOI:
    10.1007/s00283-018-9845-z
  • 发表时间:
    2018-11-15
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Manuel Kauers;Doron Zeilberger
  • 通讯作者:
    Doron Zeilberger

Doron Zeilberger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Doron Zeilberger', 18)}}的其他基金

Rigorous Experimental Combinatorics
严格的实验组合学
  • 批准号:
    0901226
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Symbolic Computation and Combinatorics
符号计算和组合学
  • 批准号:
    0233610
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Symbolic Computation and Combinatorics
符号计算和组合学
  • 批准号:
    0100403
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Classical Combinatorics: An International Conference
经典组合学:国际会议
  • 批准号:
    9985949
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Targeted Proof Machines in Combinatorics
组合学中有针对性的证明机
  • 批准号:
    9732602
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Combinatorics, Special Functions, and Computer Algebra
组合学、特殊函数和计算机代数
  • 批准号:
    9500646
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Computer-Generated and Computer-Assisted Research in Combinatorics and Special Functions
数学科学:组合数学和特殊函数的计算机生成和计算机辅助研究
  • 批准号:
    9123836
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Constant Term Identities and Combinatorial Enumeration
数学科学:常数项恒等式和组合枚举
  • 批准号:
    8800663
  • 财政年份:
    1988
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Toward a General Theory of Combinatorial Bijections
数学科学:走向组合双射的一般理论
  • 批准号:
    8600243
  • 财政年份:
    1986
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Proving Identities By Combinatorial Methods
数学科学:通过组合方法证明恒等式
  • 批准号:
    8400204
  • 财政年份:
    1984
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
  • 批准号:
    2401464
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Additive Combinatorics 2024
会议:加性组合学 2024
  • 批准号:
    2418414
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Shanks Workshop on Combinatorics and Graph Theory
会议:尚克斯组合学和图论研讨会
  • 批准号:
    2415358
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
  • 批准号:
    2348525
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了