Symbolic Computation and Combinatorics
符号计算和组合学
基本信息
- 批准号:0100403
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-15 至 2002-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Doron Zeilberger proposes to continue to develop methodologies for harnessing the great potential of Symbolic Computation to do research in Combinatorics and related areas. In particular he hopes to introduce new computational and conceptual frameworks that would extend the so-called Wilf-Zeilberger proof theory to much wider classes of identities and theorems. He also proposes to continue his efforts in `Artificial Combinatorics', and develop algorithms for the discovery and {\it rigorous} proof of theorems in combinatorics whose complexity make them unfeasible for human proofs. This research should be symbiotic, as it is expected that both the concrete results and the underlying methodologies, would help computer algebra developers to improve and enhance their systems.This research is in the general area of Combinatorics. One of the goals of Combinatorics is to find efficient methods of studying how discrete collections of objects can be arranged. The behavior of discrete systems is extremely important to modern communications. For example, the design of large networks, such as those occurring in telephone systems, and the design of algorithms in computer science deal with discrete sets of objects, and this makes use of combinatorial research. This research is also in the general area of Symbolic Computation, that attempts to teach computers to perform research that previously required extensive human resources. Progress in this area promises to have important ramifications to science and technology.
Doron Zeilberger建议继续开发方法,以利用符号计算的巨大潜力在组合学和相关领域进行研究。特别是,他希望引入新的计算和概念框架,将所谓的威尔夫-泽尔伯格证明理论扩展到更广泛的恒等式和定理类别。他还建议继续他在人工组合学方面的努力,并开发发现和证明组合数学中的定理的算法,这些定理的复杂性使其不适用于人类证明。这项研究应该是共生的,因为预计具体的结果和基本的方法论都将有助于计算机代数开发人员改进和提高他们的系统。组合学的目标之一是找到有效的方法来研究离散的对象集合如何排列。离散系统的行为对于现代通信来说是极其重要的。例如,大型网络的设计,如那些发生在电话系统中的网络,以及计算机科学中的算法设计,都涉及离散的对象集,这利用了组合研究。这项研究也是在符号计算的一般领域,它试图教计算机执行以前需要大量人力资源的研究。这一领域的进展有望对科学和技术产生重要影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Doron Zeilberger其他文献
Theorems for a price: tomorrow’s semi-rigorous mathematical culture
- DOI:
10.1007/bf03024696 - 发表时间:
2009-01-10 - 期刊:
- 影响因子:0.400
- 作者:
Doron Zeilberger;George E. Andrews - 通讯作者:
George E. Andrews
D.H. Lehmer’s Tridiagonal Determinant: An Étude in (Andrews-Inspired) Experimental Mathematics
- DOI:
10.1007/s00026-019-00441-y - 发表时间:
2019-10-14 - 期刊:
- 影响因子:0.700
- 作者:
Shalosh B. Ekhad;Doron Zeilberger - 通讯作者:
Doron Zeilberger
Symbolic Moment Calculus I: Foundations and Permutation Pattern Statistics
- DOI:
10.1007/s00026-004-0226-2 - 发表时间:
2004-08-01 - 期刊:
- 影响因子:0.700
- 作者:
Doron Zeilberger - 通讯作者:
Doron Zeilberger
Tweaking the Beukers integrals in search of more miraculous irrationality proofs a la Apéry
- DOI:
10.1007/s11139-021-00523-7 - 发表时间:
2022-03-03 - 期刊:
- 影响因子:0.700
- 作者:
Robert Dougherty-Bliss;Christoph Koutschan;Doron Zeilberger - 通讯作者:
Doron Zeilberger
A Simple Rederivation of Onsager’s Solution of the 2D Ising Model Using Experimental Mathematics
- DOI:
10.1007/s00283-018-9845-z - 发表时间:
2018-11-15 - 期刊:
- 影响因子:0.400
- 作者:
Manuel Kauers;Doron Zeilberger - 通讯作者:
Doron Zeilberger
Doron Zeilberger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Doron Zeilberger', 18)}}的其他基金
Classical Combinatorics: An International Conference
经典组合学:国际会议
- 批准号:
9985949 - 财政年份:2000
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Targeted Proof Machines in Combinatorics
组合学中有针对性的证明机
- 批准号:
9732602 - 财政年份:1998
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Combinatorics, Special Functions, and Computer Algebra
组合学、特殊函数和计算机代数
- 批准号:
9500646 - 财政年份:1995
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical Sciences: Computer-Generated and Computer-Assisted Research in Combinatorics and Special Functions
数学科学:组合数学和特殊函数的计算机生成和计算机辅助研究
- 批准号:
9123836 - 财政年份:1992
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical Sciences: Constant Term Identities and Combinatorial Enumeration
数学科学:常数项恒等式和组合枚举
- 批准号:
8800663 - 财政年份:1988
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical Sciences: Toward a General Theory of Combinatorial Bijections
数学科学:走向组合双射的一般理论
- 批准号:
8600243 - 财政年份:1986
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical Sciences: Proving Identities By Combinatorial Methods
数学科学:通过组合方法证明恒等式
- 批准号:
8400204 - 财政年份:1984
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RTG: Combinatorics, Computation, and Applications at Iowa State University
RTG:爱荷华州立大学的组合学、计算和应用
- 批准号:
1839918 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
PhD studies in symbolic computation and combinatorics
符号计算和组合学博士研究
- 批准号:
444609-2013 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Postgraduate Scholarships - Master's
A research on symbolic and algebraic computation of groups and combinatorics and its application
群与组合的符号代数计算及其应用研究
- 批准号:
23540011 - 财政年份:2011
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Group actions: combinatorics, geometry and computation
群体行动:组合学、几何学和计算
- 批准号:
FF0776186 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Federation Fellowships
Schubert varieties: Combinatorics, Computation and Geometry
舒伯特流派:组合学、计算和几何
- 批准号:
0601010 - 财政年份:2006
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
REU Site: Computation, Combinatorics and Number Theory.
REU 网站:计算、组合学和数论。
- 批准号:
0552799 - 财政年份:2006
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
CAREER: Computation, Combinatorics, and Reality in Algebraic Geometry, with Applications
职业:代数几何中的计算、组合学和现实及其应用
- 批准号:
0538734 - 财政年份:2004
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Groebner Fans in Combinatorics, Representation Theory and Commutative Algebra: Theory and Computation
格罗布纳的组合学、表示论和交换代数爱好者:理论与计算
- 批准号:
0401047 - 财政年份:2004
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Combinatorics in Cohomology and Computation
上同调和计算中的组合学
- 批准号:
0304789 - 财政年份:2003
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
CAREER: Computation, Combinatorics, and Reality in Algebraic Geometry, with Applications
职业:代数几何中的计算、组合学和现实及其应用
- 批准号:
0134860 - 财政年份:2002
- 资助金额:
$ 18万 - 项目类别:
Standard Grant