P-adic Deformations of Eisenstein Series
爱森斯坦级数的 P 进变形
基本信息
- 批准号:0401131
- 负责人:
- 金额:$ 14.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract of Eric Urban's award DMS-0401131. "p-adic deformation of Eisenstein series"Urban will pursue his research on the construction and the study of congruences between automorphic forms in order to attack some of the Bloch-Kato conjectures and the Iwasawa main conjectures relating critical L-values and the size of Selmer groups. He will especially work on such congruences between Eisenstein series and cusp forms as in the works by Mazur-Wiles or in his work on the main conjecture for the symmetric square of an ordinary elliptic curve. In that direction, the PI will continue his joint work in progress with C. Skinner proving the Iwasawa main conjecture for elliptic curves via the study of the Eisenstein ideal for U(2,2). He also plans to guide some Ph-D students on a similar topic for some other unitary groups. The PI will also work on the theory of p-adic families of automorphic forms for general reductive groups by both geometric and topological approaches. This work will be undertaken for its own interest but also because the study of such congruences for Eisenstein series has numerous powerful applications. By these means, Urban plans to obtain some new and general constructions of certain arithmetical fundamental objects as for instance $p$-adic Euler systems that will be an essential tool to bound above the size of some Selmer groups.Urban's research field is the arithmetic theory of automorphic forms. Those are certain holomorphic functions having many symmetries and whose deep arithmetical properties are read from their Fourier coefficients. These objects play a fundamental role in number theory as their study has been very fruitful in the last two decades, leading A. Wiles to the proof of the Fermat's last theorem. The ultimate goal of the inverstigator's research is to relate two apparently unrelated objects which are the special values of L-functions (a meromorphic function on the complex planes associated to an automorphic form) and the order of certain Selmer groups (a generalization of the class group of a number field) via the study of congruences between automorphic forms. One of the main tools that will be used in Urban's investigation is the theory of p-adic modular forms, a theory that encodes all the congruences between modular forms modulo arbitrary high powers of a given prime number p. He will develop new aspects of this theory for general reductive groups and apply it to relevant modular forms called Eisenstein series whose constant terms carry information on critical L-values. Among other things, the results of this research will also have some important implications to the p-adic and classical conjecture of Birch and Swinnerton-Dyer that are major conjectures on the set of solutions of cubic equations in two variables
Eric Urban的获奖摘要DMS-0401131。“爱森斯坦级数的p-adic变形“厄本将继续他的研究建设和自守形式之间的同余关系的研究,以攻击一些布洛赫-加藤定理和岩泽主要定理有关的临界L-值和大小的塞尔默群。 他将特别致力于这种同余关系之间的爱森斯坦系列和尖点形式的作品,由马祖尔,怀尔斯或在他的工作主要猜想的对称广场的一个普通的椭圆曲线。在这方面,PI将继续与C. Skinner通过研究U(2,2)的Eisenstein理想证明了椭圆曲线的Iwasawa主猜想。他还计划指导一些博士生对其他一些单一的群体类似的主题。 PI还将通过几何和拓扑方法研究一般还原群的自守形式的p进族理论。这项工作将进行自己的利益,但也因为研究这种同余式的爱森斯坦系列有许多强大的应用。通过这些手段,城市计划获得一些新的和一般建设的某些算术基本对象,例如$p$-进欧拉系统,这将是一个必不可少的工具,以约束以上的大小,一些塞尔默groups.Urban的研究领域是算术理论的自守形式。 这些是具有许多对称性的某些全纯函数,其深刻的算术性质可以从它们的傅立叶系数中读取。这些对象在数论中起着基础性的作用,因为它们的研究在过去的二十年里取得了丰硕的成果,导致A。费马最后定理的证明。研究者的最终目标是通过研究自守形式之间的同余关系,将两个显然无关的对象联系起来,这两个对象是L-函数(与自守形式相关的复平面上的亚纯函数)的特殊值和某些塞尔默群(数域的类群的推广)的阶。一个主要的工具,将用于城市的调查是理论的p进模块化形式,一个理论,编码之间的所有同余模块化形式模任意高权力的一个给定的素数p,他将开发新的方面,这一理论的一般还原群,并将其应用到相关的模块化形式称为爱森斯坦系列的常数项进行信息的关键L-值。除此之外,本文的研究结果对三次二元方程解集的主要理论--Birch和Swinnerton-Dyer的p-adic猜想和经典猜想也有重要的意义
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Jean-Paul Urban其他文献
Eric Jean-Paul Urban的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Jean-Paul Urban', 18)}}的其他基金
p-adic automorphic forms, p-adic L-functions, and Selmer groups
p 进自守形式、p 进 L 函数和 Selmer 群
- 批准号:
1407239 - 财政年份:2014
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
p-adic automorphic forms, p-adic L-functions and Galois representations
p 进自守形式、p 进 L 函数和伽罗瓦表示
- 批准号:
1101229 - 财政年份:2011
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Automorphic forms, Galois representations, periods and p-adic L-functions
FRG:协作研究:自守形式、伽罗瓦表示、周期和 p 进 L 函数
- 批准号:
0854964 - 财政年份:2009
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
p-adic automorphic representations, p-adic L-functions and Bloch-Kato conjectures
p-adic 自守表示、p-adic L-函数和 Bloch-Kato 猜想
- 批准号:
0701279 - 财政年份:2007
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Automorphic Forms, Galois Representations, and Special Values of L-functions.
FRG:协作研究:自守形式、伽罗瓦表示和 L 函数的特殊值。
- 批准号:
0456298 - 财政年份:2005
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
相似海外基金
Reaching new frontiers of quantum fields and gravity through deformations
通过变形达到量子场和引力的新前沿
- 批准号:
DP240101409 - 财政年份:2024
- 资助金额:
$ 14.1万 - 项目类别:
Discovery Projects
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
- 批准号:
2304797 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
New Rules for Coupled Severe Plastic Deformations, Phase Transformations, and Structural Changes in Metals under High Pressure
高压下金属耦合严重塑性变形、相变和结构变化的新规则
- 批准号:
2246991 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Laparoscopic surgical dynamic navigation using maximum likelihood estimation of organ deformations
使用器官变形最大似然估计的腹腔镜手术动态导航
- 批准号:
23H00480 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Clarification of Time-Dependent Deformations Mechanisms and Development of Countermeasures in Tunnels Excavated in Swelling Ground
膨胀土中开挖隧道随时间变形机制的阐明及对策的制定
- 批准号:
23K04023 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Buckly-grains: a model system for elucidating interplay of extreme deformations and reconfigurations
Buckly-grains:用于阐明极端变形和重构相互作用的模型系统
- 批准号:
22KF0084 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Models for Galois deformations and Applications
职业:伽罗瓦变形模型和应用
- 批准号:
2237237 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Symmetry-restored two-centre self-consistent approach to fission with arbitrary deformations, orientations, and distance of fragments
具有任意变形、方向和碎片距离的对称性恢复的两中心自洽裂变方法
- 批准号:
ST/W005832/1 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Research Grant
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
- 批准号:
EP/V053787/1 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Research Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2212148 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant