Asymptotic Enumeration in Combinatorial Probability
组合概率中的渐近枚举
基本信息
- 批准号:0401246
- 负责人:
- 金额:$ 29.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-17 至 2006-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0103635Pemantle The principal investigator will work in several areas of combinatorial probability. In the area of asymptotic enumeration, he will obtain approximations to coefficients of multivariate meromorphic generating functions that are asymptotically valid as the multi-index goes to infinity in any possible way. The ultimate goal is to automate this procedure, at least for the class of (multivariate) rational generating functions with nonnegative coefficients. Previous results indicate this may be feasible, or at least may be carried out to some extent. These results are to be applied to several combinatorial problems in probability theory, including asymptotics for random tilings for the so-called Aztec Diamond configurations and other related tiling ensembles conjectured to produce polynomial phase boundaries. In the area of random processes with reinforcement, he will investigate the rate at which processes of stochastic approximation type converge to their ultimate limiting behavior. In particular, the slow convergence of vertex-reinforced random walks and uniformly reinforced social network models to their limits is to be explained by giving quantitative bounds on the probabilities of deviating from this behavior at finite times. It is hoped that this will both explain simulation data and give a theoretical basis for the use of these models. Among the other miscellaneous problems are several problems in economic game theory and one concerning asymptotics of solutions to functional equations. Recent progress in computer algebra has made many types of computation automated which once were done only by skilled practitioners. Nowadays, a few messy equations are no barrier at all to a complete theoretical and practical understanding of a problem. The most tangible result of the asymptotic enumeration project will be the transformation of a formerly difficult type of computation into a straightforward, though messy, series of steps. Applications reach far beyond the motivating examples of random tilings, and include queuing theory, signal processing and combinatorial enumeration. Reinforcement processes arise most commonly in three application areas: formal models of learning, population biology, and economic behavior. In each of these areas, the results of the project will shed light on when and why the theoretically predicted limiting behaviors are not observed in the timeframes of real applications.
0103635Pemantle首席研究员将在组合概率的几个领域工作。 在渐近枚举领域,他将获得多元亚纯生成函数的系数的近似,这些函数在多指标以任何可能的方式趋于无穷大时渐近有效。 最终的目标是自动化这一过程,至少对于类(多元)合理的非负系数生成函数。以前的研究结果表明,这可能是可行的,或者至少可以在一定程度上进行。 这些结果将被应用到概率论中的几个组合问题,包括所谓的阿兹特克钻石配置和其他相关的瓷砖合奏的随机平铺渐近性被证明产生多项式相边界。 在加强随机过程领域,他将研究随机逼近型过程收敛到其最终极限行为的速率。 特别是,顶点强化随机游走和均匀强化社会网络模型收敛到极限的缓慢性,可以通过给出在有限时间偏离这种行为的概率的定量界限来解释。 希望这既能解释模拟数据,又能为这些模型的使用提供理论依据。 在其他杂项问题中有几个问题在经济博弈论和一个关于渐近解的功能方程。计算机代数的最新进展使许多类型的计算自动化,这些计算曾经只能由熟练的从业者完成。 如今,几个乱七八糟的方程根本不妨碍对一个问题的完整的理论和实践理解。 渐近枚举项目最切实的结果将是将以前困难的计算类型转变为简单的,尽管混乱的一系列步骤。 应用范围远远超出随机平铺的激励性例子,包括排队论,信号处理和组合枚举。 强化过程最常见于三个应用领域:学习的形式模型、群体生物学和经济行为。在这些领域中的每一个,该项目的结果将阐明何时以及为什么理论上预测的极限行为在真实的应用的时间范围内没有观察到。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin Pemantle其他文献
Asymptotic expansions of oscillatory integrals with complex phase
具有复相位的振荡积分的渐近展开式
- DOI:
10.1090/conm/520/10261 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Robin Pemantle;Mark C. Wilson - 通讯作者:
Mark C. Wilson
Domination Between Trees and Application to an Explosion Problem
树之间的支配及其在爆炸问题中的应用
- DOI:
10.1214/aop/1176988855 - 发表时间:
2004 - 期刊:
- 影响因子:2.3
- 作者:
Robin Pemantle;Y. Peres - 通讯作者:
Y. Peres
On sharp transitions in making squares
关于制作正方形的急剧转变
- DOI:
10.4007/annals.2012.175.3.10 - 发表时间:
2008 - 期刊:
- 影响因子:4.9
- 作者:
Ernie Croot;A. Granville;Robin Pemantle;P. Tetali - 通讯作者:
P. Tetali
Hyperbolicity and stable polynomials in combinatorics and probability
组合学和概率中的双曲性和稳定多项式
- DOI:
10.4310/cdm.2011.v2011.n1.a2 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Robin Pemantle - 通讯作者:
Robin Pemantle
Random walk in a random environment and rst-passage percolation on trees
随机环境中的随机游走和树上的首次渗透
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Robin Pemantle;R. Lyons - 通讯作者:
R. Lyons
Robin Pemantle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin Pemantle', 18)}}的其他基金
CAREER: Liouville Quantum Gravity, Two-Dimensional Random Geometry, and Conformal Field Theory
职业:刘维尔量子引力、二维随机几何和共形场论
- 批准号:
2046514 - 财政年份:2021
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
Coalescing systems with random initial conditions
具有随机初始条件的聚结系统
- 批准号:
1612674 - 财政年份:2016
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
The geometry of probability generating functions
概率生成函数的几何
- 批准号:
1209117 - 财政年份:2012
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
Automatic asymptotics and probability models
自动渐近和概率模型
- 批准号:
0905937 - 财政年份:2009
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
Asymptotic enumeration, reinforcement, and effective limit theory
渐近枚举、强化和有效极限理论
- 批准号:
0603821 - 财政年份:2006
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
Asymptotic Enumeration in Combinatorial Probability
组合概率中的渐近枚举
- 批准号:
0103635 - 财政年份:2001
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Random Trees and Tree-Indexed Processes
数学科学:随机树和树索引过程
- 批准号:
9300191 - 财政年份:1993
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
相似海外基金
LEAPS-MPS: Algebraic and Combinatorial Methods in Permutation Enumeration
LEAPS-MPS:排列枚举中的代数和组合方法
- 批准号:
2316181 - 财政年份:2023
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
Asymptotic Representation Theory, Enumeration, and Combinatorial Probability
渐近表示理论、枚举和组合概率
- 批准号:
1800725 - 财政年份:2018
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
A Tractable Enumeration without Multiplication and Floating-Point Operation for Combinatorial Optimization Problems
组合优化问题的无乘法和浮点运算的易处理枚举
- 批准号:
15K11990 - 财政年份:2015
- 资助金额:
$ 29.5万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Computing Partition Functions in Hard Problems of Combinatorial Enumeration and Optimization
计算组合枚举和优化难题中的配分函数
- 批准号:
1361541 - 财政年份:2014
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
MPS: BIO: Theory, Algorithms, Software, for Predicting Geometric Entropy-driven Virus Assembly, using Multiscale Configuration Space Atlasing and Combinatorial Enumeration
MPS:BIO:使用多尺度配置空间图谱和组合枚举来预测几何熵驱动的病毒组装的理论、算法、软件
- 批准号:
1122541 - 财政年份:2011
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
CAREER: Combinatorial probability, limit shapes and enumeration
职业:组合概率、极限形状和枚举
- 批准号:
0955584 - 财政年份:2010
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
Combinatorial enumeration, random map, and graph theory
组合枚举、随机映射和图论
- 批准号:
138336-2005 - 财政年份:2009
- 资助金额:
$ 29.5万 - 项目类别:
Discovery Grants Program - Individual
Problemsin combinatorial enumeration
组合枚举问题
- 批准号:
381968-2009 - 财政年份:2009
- 资助金额:
$ 29.5万 - 项目类别:
University Undergraduate Student Research Awards
Combinatorial Enumeration and Random Generation
组合枚举和随机生成
- 批准号:
0837923 - 财政年份:2008
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
Combinatorial enumeration, random map, and graph theory
组合枚举、随机映射和图论
- 批准号:
138336-2005 - 财政年份:2008
- 资助金额:
$ 29.5万 - 项目类别:
Discovery Grants Program - Individual