Computing Partition Functions in Hard Problems of Combinatorial Enumeration and Optimization

计算组合枚举和优化难题中的配分函数

基本信息

项目摘要

Problems of combinatorial optimization concern finding the optimal value of a function defined on a finite, though very large, set. Such problems have many real world applications and, for the most part, are notoriously difficult to solve, because the set of possible solutions is prohibitively large. The P.I. intends to investigate such problems through the approach of partition functions, the method inspired to a large extent by statistical physics. This will lead to new efficient algorithms in previously intractable problems.The particular problems addressed by the project include efficient computation of partition functions associated with perfect matching in (hyper)graphs, Hamiltonian cycles and cliques in graphs, graph homomorphisms, and systems of multivariate real quadratic equations. It will allow one to identify efficiently solvable cases of hard problems. For example, one will be able to efficiently distinguish graphs with sufficiently many (but still hard to find) Hamiltonian cycles from graphs that are sufficiently far away from Hamiltonian.
组合最优化的问题涉及找到一个函数的最优值定义在一个有限的,但非常大的,集。这类问题在真实的世界中有许多应用,而且在大多数情况下,由于可能的解决方案的集合太大,因此难以解决。私家侦探打算通过配分函数的方法来研究这些问题,该方法在很大程度上受到统计物理学的启发。这将导致新的高效算法在以前棘手的problems.The特定的问题,该项目所解决的包括有效的计算分区功能与完美匹配(超)图,哈密尔顿圈和图中的团,图同态,和系统的多变量真实的二次方程。它将使人们能够有效地识别困难问题的可解情况。例如,人们将能够有效地区分具有足够多(但仍然很难找到)的哈密尔顿圈的图与足够远离哈密尔顿圈的图。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Barvinok其他文献

Integration and Optimization of Multivariate Polynomials by Restriction onto a Random Subspace
Measure concentration in optimization
  • DOI:
    10.1007/bf02614310
  • 发表时间:
    1997-10-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Alexander Barvinok
  • 通讯作者:
    Alexander Barvinok
Explicit Constructions of Centrally Symmetric $$k$$ -Neighborly Polytopes and Large Strictly Antipodal Sets
  • DOI:
    10.1007/s00454-013-9495-z
  • 发表时间:
    2013-03-12
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Alexander Barvinok;Seung Jin Lee;Isabella Novik
  • 通讯作者:
    Isabella Novik
Centrally symmetric polytopes with many faces
  • DOI:
    10.1007/s11856-012-0107-z
  • 发表时间:
    2012-09-20
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Alexander Barvinok;Seung Jin Lee;Isabella Novik
  • 通讯作者:
    Isabella Novik

Alexander Barvinok的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Barvinok', 18)}}的其他基金

Combinatorics, Complexity and Complex Zeros of Partition Functions
配分函数的组合、复杂性和复零点
  • 批准号:
    1855428
  • 财政年份:
    2019
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Combinatorics, Geometry, and Algorithms
组合学、几何和算法
  • 批准号:
    0856640
  • 财政年份:
    2009
  • 资助金额:
    $ 38万
  • 项目类别:
    Continuing Grant
Complexity in Geometric Combinatorics
几何组合的复杂性
  • 批准号:
    0400617
  • 财政年份:
    2004
  • 资助金额:
    $ 38万
  • 项目类别:
    Continuing Grant
CAREER Award Program: Alexander Barvinok
职业生涯奖励计划:Alexander Barvinok
  • 批准号:
    9734138
  • 财政年份:
    1998
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Algebraic Methods in Optimization
数学科学:优化中的代数方法
  • 批准号:
    9501129
  • 财政年份:
    1995
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant

相似海外基金

CBMS Conference: Ramanujan's Partition Congruences, Mock Theta Functions, and Beyond
CBMS 会议:拉马努金的划分同余、模拟 Theta 函数及其他
  • 批准号:
    2132649
  • 财政年份:
    2021
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
On the complexity of approximating partition functions
关于近似配分函数的复杂性
  • 批准号:
    2763180
  • 财政年份:
    2019
  • 资助金额:
    $ 38万
  • 项目类别:
    Studentship
Combinatorics, Complexity and Complex Zeros of Partition Functions
配分函数的组合、复杂性和复零点
  • 批准号:
    1855428
  • 财政年份:
    2019
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
The computation of the partition functions for five-dimensional supersymmetric theories from the topological vertex
从拓扑顶点计算五维超对称理论的配分函数
  • 批准号:
    18K13543
  • 财政年份:
    2018
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Symmetries of String Theory Partition Functions
弦论配分函数的对称性
  • 批准号:
    2111764
  • 财政年份:
    2018
  • 资助金额:
    $ 38万
  • 项目类别:
    Studentship
Entanglement Measures, Twist Fields, and Partition Functions in Quantum Field Theory
量子场论中的纠缠测度、扭曲场和配分函数
  • 批准号:
    EP/P006132/1
  • 财政年份:
    2016
  • 资助金额:
    $ 38万
  • 项目类别:
    Research Grant
Entanglement Measures, Twist Fields, and Partition Functions in Quantum Field Theory
量子场论中的纠缠测度、扭曲场和配分函数
  • 批准号:
    EP/P006108/1
  • 财政年份:
    2016
  • 资助金额:
    $ 38万
  • 项目类别:
    Research Grant
Studies on the partition functions of quantum integrable models and representation theory of symmetric polynomials
量子可积模型的配分函数及对称多项式表示论研究
  • 批准号:
    15H06218
  • 财政年份:
    2015
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Discrete-time integrable systems and partition functions of vicious walk systems
离散时间可积系统和恶性游走系统的配分函数
  • 批准号:
    22740063
  • 财政年份:
    2010
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Studies in arithmetic functions and partition theoretic problems
算术函数和分配理论问题的研究
  • 批准号:
    3103-2001
  • 财政年份:
    2005
  • 资助金额:
    $ 38万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了