Research in Ring Theory and Noncommutative Algebraic Geometry
环论与非交换代数几何研究
基本信息
- 批准号:0401558
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Title: Research in Ring Theory and Noncommutative AlgebraicGeometryPrincipal Investigator: K. R. GoodearlThe Principal Investigator proposes to continue his investigationsinto the structure of various classes of noncommutative rings,particularly quantum coordinate rings (quantized algebras offunctions) and related algebras, with a focus on geometric aspects ofnoncommutative rings and ring-theoretic aspects of noncommutativealgebraic geometry. The proposed projects, located withinnoncommutative algebra, will build up the infrastructure of andinterconnections among active parts of several related areas -- ringtheory, noncommutative algebraic geometry, and quantum groups. Roughlyspeaking, the long-term goals framing many of these projects stem fromnoncommutative algebraic geometry, and the basic examples come fromquantum groups, while many lines of approach are recruited from ringtheory. The main focus will be on algebraic and geometric features ofthe prime and primitive spectra of quantized coordinate rings. Thegoals include classification of prime ideals, finiteness conditionsfor prime ideals invariant under tori of automorphisms, verification ofsupporting properties such as Auslander-regularity andCohen-Macaulayness, and presentations of quantized prime or primitivespectra as topological quotients of classical spectra or varieties.A pervasive theme in the mathematical study of geometric objects isthat the properties of these objects are completely encoded in thefunctions on them, and are often more accessible via these functionsthan directly. Within algebraic geometry -- the study of geometricspaces defined by polynomial equations -- it is the polynomialfunctions on a space that determine it. These functions form a ring (asystem endowed with compatible addition and multiplication operations)which is, moreover, commutative (fg = gf always). In the 1980s,researchers in the former Soviet Union, in the process of solvingcertain problems in theoretical quantum physics, discovered ringswhich appear to enjoy all the structure of rings of functions ongeometric spaces, except that the multiplication is noncommutative. Inhonor of their origins in quantum theory, these rings are now called"quantized coordinate rings." It proved very useful to treat them asif they were rings of functions (except for the noncommutativity), andthe guiding principle in their study became the search for"noncommutative versions of the geometry." Sufficiently many commonphenomena (both geometric and algebraic) have been discovered in a widerange of quantized coordinate rings to lead one to conjecture thatgeneral, axiomatizable underpinnings within this class of rings areresponsible for the parallels in their behavior. The main long-termthrust of the PI's research is to uncover such general structures anddecode their geometric content. In the medium term, the proposal aimsto extend the range of known shared phenomena within this class ofrings, in order to gain better insight into their common base.
项目名称:环论与非交换代数几何研究。R. Goodear首席研究员建议继续他的investigationinto结构的各种类别的非交换环,特别是量子坐标环(量子代数函数)和相关代数,重点是几何方面的非交换环和环理论方面的非交换代数几何。拟议的项目,位于非交换代数,将建立基础设施和几个相关领域的活跃部分之间的互连-环理论,非交换代数几何和量子群。粗略地说,许多这些项目的长期目标来自非交换代数几何,基本的例子来自量子群,而许多方法来自环理论。主要讨论量子化坐标环的素谱和本原谱的代数和几何特征。这些目标包括素理想的分类、素理想在自同构环面下不变的有限性条件、支持性质如Auslander正则性和Cohen-Macaulay性的验证以及量化的素谱或连续谱作为经典谱或簇的拓扑等价物的表示。在几何对象的数学研究中一个普遍的主题是这些对象的性质完全编码在它们上的函数中,and are often经常more accessible访问via通过these functions功能than directly直接.在代数几何中--研究由多项式方程定义的几何空间--是空间上的多项式函数决定了它。这些函数形成了一个环(具有相容的加法和乘法运算的系统),而且,这个环是可交换的(fg = gf总是)。在20世纪80年代,前苏联的研究人员在解决理论量子物理中的某些问题的过程中,发现了环,这些环似乎享有几何空间上函数环的所有结构,除了乘法是非交换的。为了纪念它们在量子理论中的起源,这些环现在被称为“量子化坐标环”。事实证明,把它们当作函数环(除了非交换性)来对待是非常有用的,他们研究的指导原则变成了寻找“非交换形式的几何”。“在广泛的量子化坐标环中已经发现了足够多的共同现象(几何和代数),从而使人们猜想,这类环中的一般性、可公理化的基础是它们行为中的相似之处的原因。PI研究的主要长期目标是揭示这种一般结构并解码其几何内容。在中期,该提案旨在扩大这类环中已知的共享现象的范围,以便更好地了解它们的共同基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Goodearl其他文献
Kenneth Goodearl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Goodearl', 18)}}的其他基金
Research in Ring Theory and Noncommutative Algebraic Geometry
环论与非交换代数几何研究
- 批准号:
1601184 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
Research in Ring Theory and Noncommutative Algebraic Geometry
环论与非交换代数几何研究
- 批准号:
0800948 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Research in Ring Theory
数学科学:环理论研究
- 批准号:
9622876 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Research in Ring Theory
数学科学:环理论研究
- 批准号:
9301244 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Differential Operator Rings, Noetherian Rings, and Von Neumann Regular Rings
数学科学:微分算子环、诺特环和冯诺依曼正则环
- 批准号:
9002355 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Workshop on Homological Aspects of Finite Dimensional Algebras to be held in June 1991 at the University of Utah
数学科学:有限维代数同调方面研讨会将于 1991 年 6 月在犹他大学举行
- 批准号:
8921555 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Von Neumann Regular Rings, Differential Operator Rings, and Noetherian Rings
数学科学:冯诺依曼正则环、微分算子环和诺特环
- 批准号:
8801247 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Von Neumann Regular Rings and Differential Operator Rings
数学科学:冯诺依曼正则环和微分算子环
- 批准号:
8600954 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
玉米RING型E3泛素连接酶基因介导的遮荫反应研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
RING 型锌指蛋白 BnCd23 参与油菜镉积累耐受的机理解
析
- 批准号:2024JJ6213
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
RING类E3泛素连接酶TREL1通过降解TCP4转录因子调控叶片发育
- 批准号:32370355
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
类泛素结合酶UBC12通过RING1促进食管鳞癌增殖及作为预后检测标志物的研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
RING1B的酶活性参与调控肝母细胞瘤发生发展和干性维持的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
羊痘病毒RING finger蛋白对NF-κB通路的调控作用研究
- 批准号:
- 批准年份:2022
- 资助金额:32 万元
- 项目类别:
通过控制表观遗传研究RING1A/PRC1作为广谱冠状病毒抑制的新靶点
- 批准号:82272337
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
蛋白激酶SnRK1和E3泛素连接酶RING3介导WRKY44降解调控沉香倍半萜合成的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
RING E3泛素连接酶BoLOG2对芥蓝脂肪类芥子油苷合成的调控机制
- 批准号:LY21C020002
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
RING型E3泛素蛋白连接酶ZmGDR1调控玉米籽粒脱水的分子机制
- 批准号:32001558
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Commutative Ring theory using tools of Singularity Theory
使用奇点理论工具的交换环理论
- 批准号:
23K03040 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in Noncommutative Ring Theory
非交换环理论专题
- 批准号:
RGPIN-2022-03783 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Topics in noncommutative ring theory
非交换环理论主题
- 批准号:
RGPIN-2016-04706 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Commutative Ring Theory via Resolution of Singularities
通过奇点解析的交换环理论
- 批准号:
20K03522 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in noncommutative ring theory
非交换环理论主题
- 批准号:
RGPIN-2016-04706 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Topics in noncommutative ring theory
非交换环理论主题
- 批准号:
RGPIN-2016-04706 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Topics in noncommutative ring theory
非交换环理论主题
- 批准号:
RGPIN-2016-04706 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development of local ring theory actively using the theory of Hilbert functions
积极利用希尔伯特函数理论发展局部环理论
- 批准号:
18K03241 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on perfectoid spaces and applications to commutative ring theory
完美类空间及其在交换环理论中的应用研究
- 批准号:
18K03257 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in noncommutative ring theory
非交换环理论主题
- 批准号:
RGPIN-2016-04706 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual