Topological and Geometric Aspects of Tiling Dynamical Systems
平铺动力系统的拓扑和几何方面
基本信息
- 批准号:0401655
- 负责人:
- 金额:$ 11.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dr. Lorenzo Sadun will analyze several problems on the topology and dynamics of tiling spaces. One problem concerns computing the Cech cohomology groups of tiling spaces. Another problem is to find criteria for when the natural translation action on a substitution tiling space (or a deformation of such an action) is topologically mixing. A third problem is to consider tilings of hyperbolic space, where the natural group action is nonabelian and in that the group is not amenable.These problems are motivated by quasicrystals, a class of solids that are highly ordered but are not crystals. Quasicrystals are modeled by aperiodic tilings, and ergodic theory relates the bulk properties of a quasicrystal (such as its ability to diffract light, its electrical conductance, and its rigidity) to certain averages taken over a space of possible quasicrystals, or equivalently a space of tilings. The better we understand the abstract mathematical properties of tiling spaces, the better we understand the down-to-earth physical properties of quasicrystals and of other materials.
Lorenzo Sadun博士将分析有关平铺空间的拓扑和动力学的几个问题。 一个问题涉及计算平铺空间的Cech上同调群。 另一个问题是找到当替换平铺空间上的自然平移动作(或这种动作的变形)是拓扑混合时的标准。 第三个问题是考虑双曲空间的平铺,其中自然群作用是非交换的,并且群是不顺从的。这些问题的动机是准晶体,一类高度有序但不是晶体的固体。 准晶是用非周期性的镶嵌来模拟的,遍历理论将准晶的整体性质(如对光的吸收能力、电导率和刚性)与可能的准晶空间(或等价的镶嵌空间)上的某些平均值联系起来。 我们对平铺空间的抽象数学性质理解得越好,就越能理解准晶体和其他材料的实际物理性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lorenzo Sadun其他文献
Parallel connections over symmetric spaces
- DOI:
10.1007/bf02921966 - 发表时间:
2001-06-01 - 期刊:
- 影响因子:1.500
- 作者:
Luis Guijarro;Lorenzo Sadun;Gerard Walschap - 通讯作者:
Gerard Walschap
Small Cocycles, Fine Torus Fibrations, and a $$\varvec{\mathbb {Z}^{2}}$$ Subshift with Neither
- DOI:
10.1007/s00023-017-0579-9 - 发表时间:
2017-04-10 - 期刊:
- 影响因子:1.300
- 作者:
Alex Clark;Lorenzo Sadun - 通讯作者:
Lorenzo Sadun
The isoperimetric problem for pinwheel tilings
- DOI:
10.1007/bf02102438 - 发表时间:
1996-03-01 - 期刊:
- 影响因子:2.600
- 作者:
Charles Radin;Lorenzo Sadun - 通讯作者:
Lorenzo Sadun
A symmetric family of Yang-Mills fields
- DOI:
10.1007/bf02102009 - 发表时间:
1994-07-01 - 期刊:
- 影响因子:2.600
- 作者:
Lorenzo Sadun - 通讯作者:
Lorenzo Sadun
Conjugacies for Tiling Dynamical Systems
- DOI:
10.1007/s00220-004-1195-3 - 发表时间:
2004-11-05 - 期刊:
- 影响因子:2.600
- 作者:
Charles Holton;Charles Radin;Lorenzo Sadun - 通讯作者:
Lorenzo Sadun
Lorenzo Sadun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lorenzo Sadun', 18)}}的其他基金
Causal Inference for Extremes via Tropical Geometry
通过热带几何对极端情况进行因果推断
- 批准号:
2113468 - 财政年份:2021
- 资助金额:
$ 11.1万 - 项目类别:
Continuing Grant
Topology of Tiling Dynamical Systems
平铺动力系统的拓扑
- 批准号:
1101326 - 财政年份:2011
- 资助金额:
$ 11.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9206257 - 财政年份:1992
- 资助金额:
$ 11.1万 - 项目类别:
Fellowship Award
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups
无限群、幺半群和逆半群的算法、拓扑和几何方面
- 批准号:
EP/V032003/1 - 财政年份:2022
- 资助金额:
$ 11.1万 - 项目类别:
Fellowship
Global Topological and Geometric aspects of AdS/CFT backgrounds.
AdS/CFT 背景的全局拓扑和几何方面。
- 批准号:
2288680 - 财政年份:2019
- 资助金额:
$ 11.1万 - 项目类别:
Studentship
Geometric aspects of optical and transport phenomena in gapless topological phases
无间隙拓扑相中光学和传输现象的几何方面
- 批准号:
1738384 - 财政年份:2018
- 资助金额:
$ 11.1万 - 项目类别:
Continuing Grant
Geometric aspects of optical and transport phenomena in gapless topological phases
无间隙拓扑相中光学和传输现象的几何方面
- 批准号:
1853048 - 财政年份:2018
- 资助金额:
$ 11.1万 - 项目类别:
Continuing Grant
Topological, geometric and probabilistic aspects of dynamical systems (renewal proposal)
动力系统的拓扑、几何和概率方面(更新提案)
- 批准号:
407739711 - 财政年份:2018
- 资助金额:
$ 11.1万 - 项目类别:
Heisenberg Grants
Length of Geodesic Loops and Distortion of Knots: Quantitative Aspects of Geometric and Topological Structures
测地线环的长度和结的变形:几何和拓扑结构的定量方面
- 批准号:
491689-2015 - 财政年份:2017
- 资助金额:
$ 11.1万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Conference Proposal: Geometric and topological aspects of the representation theory of finite groups
会议提案:有限群表示论的几何和拓扑方面
- 批准号:
1624050 - 财政年份:2016
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Length of Geodesic Loops and Distortion of Knots: Quantitative Aspects of Geometric and Topological Structures
测地线环的长度和结的变形:几何和拓扑结构的定量方面
- 批准号:
491689-2015 - 财政年份:2015
- 资助金额:
$ 11.1万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Topological, geometric and probabilistic aspects of dynamical systems
动力系统的拓扑、几何和概率方面
- 批准号:
271404167 - 财政年份:2014
- 资助金额:
$ 11.1万 - 项目类别:
Heisenberg Professorships
Geometric Aspects of Quantum Field Theory and Topological String
量子场论和拓扑弦的几何方面
- 批准号:
1309118 - 财政年份:2013
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant