Conference Proposal: Geometric and topological aspects of the representation theory of finite groups
会议提案:有限群表示论的几何和拓扑方面
基本信息
- 批准号:1624050
- 负责人:
- 金额:$ 3.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The summer school and workshop "Geometric and topological aspects of the representation theory of finite groups" will take place July 27 to August 5, 2016 at the Pacific Institute for the Mathematical Sciences in Vancouver, Canada. The summer school will take place July 27-30 and the workshop will take place August 1-5. Representation theory of finite groups is a very rich subject with connections to many areas of mathematics. The subject seeks to understand the ways in which an abstract collection of operators can be expressed as transformations on a space. Striking developments in this field have recently been made by researchers in Europe. A major aim of the scheduled events is to provide an opportunity for graduate students, postdocs, and early-career researchers to learn about these developments directly from the sources. An additional aim is to facilitate new collaborations. This project will support the participation of US-based researchers (predominantly graduate students and recent PhDs) in the summer school and workshop.The scientific focus of the summer school and workshop is the representation theory of finite groups and related algebraic structures, with an emphasis on the modular case. This is an active area of research in the US and abroad, with mathematicians on different continents working on different aspects of the subject. The summer school will be centered around four lecture series: Rational Cohomology and Support for Linear Algebraic Groups (Eric Friedlander); Group Actions via Homotopy Theory (Jesper Grodal); Local Representation Theory (Radha Kessar); and Endo-trivial Modules for Infinite Groups (Peter Symonds). Taken together, these topics cover a broad range of current research on modular representation theory of finite groups. The workshop will consist of twenty-three lectures by international scholars who are are known for their seminal contributions and for their ability to communicate mathematics effectively. The lectures from the summer school and workshop will be submitted for publication. The webpage for the summer school and workshop is http://www.pims.math.ca/scientific-event/160727-psswgatartofg.
暑期学校和研讨会“有限群表示论的几何和拓扑方面”将于 2016 年 7 月 27 日至 8 月 5 日在加拿大温哥华太平洋数学科学研究所举行。暑期学校将于 7 月 27 日至 30 日举行,研讨会将于 8 月 1 日至 5 日举行。有限群表示论是一门非常丰富的学科,与数学的许多领域都有联系。该主题旨在理解将运算符的抽象集合表示为空间变换的方式。欧洲研究人员最近在这一领域取得了惊人的进展。预定活动的一个主要目的是为研究生、博士后和早期职业研究人员提供直接从来源了解这些发展的机会。另一个目标是促进新的合作。该项目将支持美国研究人员(主要是研究生和最近的博士)参加暑期学校和研讨会。暑期学校和研讨会的科学重点是有限群和相关代数结构的表示理论,重点是模块化案例。这是美国和国外的一个活跃的研究领域,不同大陆的数学家正在研究该学科的不同方面。暑期学校将围绕四个系列讲座:有理上同调和线性代数群的支持(Eric Friedlander);通过同伦理论进行群体行动(Jesper Grodal);局部表示理论(Radha Kessar);和无限组的 Endo-trivial 模块(Peter Symonds)。总而言之,这些主题涵盖了当前有限群模表示论的广泛研究。该研讨会将由国际学者举办 23 场讲座,这些学者以其开创性的贡献和有效传播数学的能力而闻名。暑期学校和研讨会的讲座将提交出版。暑期学校和研讨会的网页是http://www.pims.math.ca/scientific-event/160727-psswgatartofg。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srikanth Iyengar其他文献
Fully Automated Agatston Score Calculation From Electrocardiography-Gated Cardiac Computed Tomography Using Deep Learning and Multi-Organ Segmentation: A Validation Study.
使用深度学习和多器官分割从心电图门控心脏计算机断层扫描全自动计算 Agatston 评分:一项验证研究。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.8
- 作者:
Ashish Gautam;Prashant Raghav;Vijay Subramaniam;Sunil Kumar;Sudeep Kumar;Dharmendra Jain;Ashish Verma;Parminder Singh;Manphoul Singhal;Vikash Gupta;S. Rathore;Srikanth Iyengar;Sudhir Rathore - 通讯作者:
Sudhir Rathore
Class and rank of differential modules THANKSREF="*" ID="*"Research partly supported by NSF grant DMS 0201904 (L.L.A.), NSERC grant 3-642-114-80 (R.O.B.), and NSF grant DMS 0442242 (S.I.).
- DOI:
10.1007/s00222-007-0041-6 - 发表时间:
2007-03-07 - 期刊:
- 影响因子:3.600
- 作者:
Luchezar L. Avramov;Ragnar-Olaf Buchweitz;Srikanth Iyengar - 通讯作者:
Srikanth Iyengar
Srikanth Iyengar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srikanth Iyengar', 18)}}的其他基金
Local Algebra and Local Representation Theory
局部代数和局部表示论
- 批准号:
2001368 - 财政年份:2020
- 资助金额:
$ 3.89万 - 项目类别:
Continuing Grant
Homological Aspects of Commutative Algebra and Applications to Modular Representation Theory
交换代数的同调方面及其在模表示理论中的应用
- 批准号:
1700985 - 财政年份:2017
- 资助金额:
$ 3.89万 - 项目类别:
Continuing Grant
Conference Proposal: Interactions between Representation Theory, Algebraic Topology and Commutative Algebra
会议提案:表示论、代数拓扑学和交换代数之间的相互作用
- 批准号:
1501399 - 财政年份:2015
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant
Commutative algebra: homological and homotopical aspects
交换代数:同调和同伦方面
- 批准号:
1503044 - 财政年份:2014
- 资助金额:
$ 3.89万 - 项目类别:
Continuing Grant
Pan American Advanced Studies Institute: Commutative Algebra and Its Interactions with Algebraic Geometry, Representation Theory, and Physics; Guanajuato, Mexico; May 14-25, 2012
泛美高等研究院:交换代数及其与代数几何、表示论和物理学的相互作用;
- 批准号:
1123059 - 财政年份:2012
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant
Commutative algebra: homological and homotopical aspects
交换代数:同调和同伦方面
- 批准号:
1201889 - 财政年份:2012
- 资助金额:
$ 3.89万 - 项目类别:
Continuing Grant
Derived categories of complete intersections and Hochschild cohomology
完全交集和 Hochschild 上同调的派生范畴
- 批准号:
0903493 - 财政年份:2009
- 资助金额:
$ 3.89万 - 项目类别:
Continuing Grant
Derived invariants of commutative rings
交换环的导出不变量
- 批准号:
0602498 - 财政年份:2006
- 资助金额:
$ 3.89万 - 项目类别:
Continuing Grant
Homological Invariants of Modules Over Commutative Rings
交换环上模的同调不变量
- 批准号:
0442242 - 财政年份:2004
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant
Homological Invariants of Modules Over Commutative Rings
交换环上模的同调不变量
- 批准号:
0302892 - 财政年份:2003
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant
相似海外基金
Topological, geometric and probabilistic aspects of dynamical systems (renewal proposal)
动力系统的拓扑、几何和概率方面(更新提案)
- 批准号:
407739711 - 财政年份:2018
- 资助金额:
$ 3.89万 - 项目类别:
Heisenberg Grants
Proposal for PhD Studies in Geometric Quantization
几何量化博士研究提案
- 批准号:
443825-2013 - 财政年份:2015
- 资助金额:
$ 3.89万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Proposal for PhD Studies in Geometric Quantization
几何量化博士研究提案
- 批准号:
443825-2013 - 财政年份:2014
- 资助金额:
$ 3.89万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Proposal for PhD Studies in Geometric Quantization
几何量化博士研究提案
- 批准号:
443825-2013 - 财政年份:2013
- 资助金额:
$ 3.89万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Conference Proposal: Geometric Topology in Cortona
会议提案:科尔托纳的几何拓扑
- 批准号:
1313541 - 财政年份:2013
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant
NetSE: Small: Collaborative Proposal: A Geometric Computational Approach to Efficiently Deploy and Manage Self-Organizing Wireless Communication Networks
NetSE:小型:协作提案:有效部署和管理自组织无线通信网络的几何计算方法
- 批准号:
0916941 - 财政年份:2009
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant
Collaborative Proposal: A Geometric Method for Image Registration
协作提案:图像配准的几何方法
- 批准号:
0612998 - 财政年份:2006
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant
Collaborative Proposal: A Geometric Method for Image Registration
协作提案:图像配准的几何方法
- 批准号:
0612389 - 财政年份:2006
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant
Conference Proposal: Talbot Workshops 2005 - 2007: Geometric Langlands
会议提案:Talbot 研讨会 2005 - 2007:几何朗兰兹
- 批准号:
0512714 - 财政年份:2005
- 资助金额:
$ 3.89万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH PROPOSAL: Hybrid Modeling for Geometric Design, Estimation, and Analysis
合作研究提案:几何设计、估计和分析的混合建模
- 批准号:
0310705 - 财政年份:2003
- 资助金额:
$ 3.89万 - 项目类别:
Continuing Grant














{{item.name}}会员




