Subfactors, bimodules, and quantum mechanics

子因子、双模和量子力学

基本信息

  • 批准号:
    0401734
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

The project involves continued work on subfactor and planar algebra theory and a new investigation of the relation between the Connes tensor product of bimodules over von Neumann algebras and very strongly intertwined quantum systems. The planar operad can be used to axiomatise a large class of hyperfinite subfactors and we intend to exploit this new point of view to better understand existing examples and discover new ones, as well as exploring planar algebras beyond the positivity condition required for subfactors. We say that two quantum systems are very strongly intertwined if there is an algebra of "common observables" which means that certain of one system automatically yield measurement of the other system. We would then expect the Hilbert space for the joint system to be the Connes tensor product of the individual Hilbert space, taken over the von Neumann algebra of common observables. We shall look for such systems and see if this kind of intertwining has observable consequences.The project is a continuing investigation of the mathematical structure of quantum mechanics-the study of the universe on a very small scale. The states of a system ("wave functions") are defined by a Hilbert space and operators on that Hilbert Space represent measurements. A von Neumann algebra is a collection of operators with certain physically relevant closure properties. "Factors" are von Neumann algebras with no operators commuting with all others in the algebra. The algebra of all observables localized in a region of space-time is a factor. Subfactors occur in interesting ways when considering the causal geometry of space-time. The project focuses on subfactors and a related way of combining two quantum systems called the Connes tensor product which is capable of identifying a von Neumann algebra of observables on one system with such an algebra on the other. There are potential applications of these ideas to quantum computing, especially through the approach of Michael Freedman.
该项目涉及继续工作的子因子和平面代数理论和一个新的调查之间的关系康纳斯张量积双模冯诺依曼代数和非常强烈的纠缠量子系统。平面运算可用于公理化一大类超有限子因子,我们打算利用这一新的观点,以更好地了解现有的例子,发现新的,以及探索平面代数以外的积极性条件所需的子因子。我们说,两个量子系统是非常强烈地交织在一起,如果有一个代数的“共同可观”,这意味着某些一个系统自动产生测量的其他系统。这样,我们就可以期望联合系统的希尔伯特空间是单个希尔伯特空间的康纳斯张量积,它覆盖了公共观测量的冯·诺依曼代数。我们将寻找这样的系统,看看这种交织是否有可观察到的后果。该项目是对量子力学数学结构的持续研究--在非常小的尺度上研究宇宙。系统的状态(“波函数”)由希尔伯特空间定义,希尔伯特空间上的算子表示测量。冯·诺依曼代数是具有某些物理相关闭包性质的算子的集合。“因子”是冯诺依曼代数,没有与代数中所有其他算子交换的算子。在一个时空区域中的所有可观测量的代数是一个因素。在考虑时空的因果几何时,子因子以有趣的方式出现。该项目的重点是子因子和一种相关的方法,结合两个量子系统称为康纳斯张量积,这是能够确定一个系统上的冯诺依曼代数的观测与这样的代数上的其他。这些想法在量子计算中有潜在的应用,特别是通过Michael Freedman的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vaughan Jones其他文献

Pemphigus vulgaris in pregnancy with favourable foetal prognosis
妊娠期寻常型天疱疮胎儿预后良好
  • DOI:
    10.1046/j.1365-2230.1998.00370.x
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Hern;Vaughan Jones;Setterfield;DU PELOUX MENAGÉ;Greaves;Rowlatt;Brookes;Black
  • 通讯作者:
    Black
Planar algebras
平面代数

Vaughan Jones的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vaughan Jones', 18)}}的其他基金

Quantum Symmetries: Subfactors and Planar Algebras Conference 2017
量子对称性:子因子和平面代数会议 2017
  • 批准号:
    1665434
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Subfactors and their connections with low dimensional topology, and low dimensional physics
子因子及其与低维拓扑和低维物理的联系
  • 批准号:
    1362138
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Subfactor Theory in Mathematics and Physics Conference 2014
2014年数学物理会议子因子理论
  • 批准号:
    1400275
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Von Neumann algebras, subfactors, topology and quantum physics
冯诺依曼代数、子因子、拓扑和量子物理
  • 批准号:
    0856316
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Travel Funding for International Conference (Groups-2003)
国际会议差旅费资助(团体 - 2003)
  • 批准号:
    0307231
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Planar Algebras and the Structure of Subfactors
平面代数和子因子的结构
  • 批准号:
    9970511
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
  • 批准号:
    9406770
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Structure of Operator Algebras
数学科学:算子代数的结构
  • 批准号:
    9322675
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Analytical and Combinatorial Aspects of Subfactors
数学科学:子因子的分析和组合方面
  • 批准号:
    9307234
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Structure of Operator Algebras
数学科学:算子代数的结构
  • 批准号:
    9111411
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

On constructions of asid bimodules
关于asid双模的构造
  • 批准号:
    18K13387
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Finite groups and bimodules
有限群和双模
  • 批准号:
    498819-2016
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Subfactors, bimodules and planar algebras
子因子、双模和平面代数
  • 批准号:
    1001560
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Research for Hilbert C*-bimodules and their application to complex dynamical systems
Hilbert C*-双模研究及其在复杂动力系统中的应用
  • 批准号:
    19540218
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research for Hilbert C*-bimodules and its application to analysis of discrete dynamical systems
Hilbert C*-双模研究及其在离散动力系统分析中的应用
  • 批准号:
    15540207
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research for Hilbert C^* -bimodules and its application to dicrite dynamical systems
Hilbert C^* 双模研究及其在离散动力系统中的应用
  • 批准号:
    12640210
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research for Hilbert C^*-bimodules and associated C^*-algebras
Hilbert C^*-双模及相关 C^*-代数研究
  • 批准号:
    09640189
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了