Spin Polarized Current in Magnetic Nanostructures
磁性纳米结构中的自旋极化电流
基本信息
- 批准号:0403849
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The developments in magnetic nanostructures and future magnetoelectronic devices depend crucially on the substantial spin polarization (the difference in the number of spin-up and spin-down electrons) of the ferromagnetic layer, the ability to control the switching of the ferromagnetic component, as well as effects due to spin-polarized conduction and spin-polarized current. This proposal focuses on some of the key aspects of spin-polarized currents in magnetic nanostructures. The spin diffusion lengths in metals, semiconductors, and point-contact tunnel junctions will be measured using Point-Contact Spin Spectroscopy. The temperature dependence of spin polarization in half-metallic CrO2 and Fe3O4 will also be studied in detail. The second aspect of this proposal is the investigation of the newly discovered spin-transfer torque effects in conventional ferromagnets and half-metals. Single layers of ferromagnetic materials and multilayers made up of non-magnetic, ferromagnetic and superconducting thin films will be used for these studies. The principal investigator and two female graduate students (one of whom is an African American) will carry out the proposed research at Johns Hopkins University.In addition to their electrical charge, the transport of which forms a current in an electrical circuit, electrons can also behave as tiny magnets due to an intrinsic property called spin. Traditional electronic devices, which have propelled modern technology to the electronic age, utilize only the charge of the electron. The new generation of magnetoelectronic (or spintronic) devices manipulates both charge and spin of the electron. Instead of just electrical current, magnetoelectronic devices manipulate spin-polarized current, in which the spins of the current-carrying electrons are very much aligned. One well-known magnetoelectronic device that has already perpetrated in all our computers, is the read-heads in hard drives made using materials that have enormous magnetoresistance. The development of future magnetoelectronic devices depends crucially on how one can harness and control the spins of the electrons as they are transported through devices. One major aspect of this proposal is the development and characterization of materials that can generate copious amounts of spin-polarized current. These materials hold promise as the basic materials in magnetoelectronics in a manner similar to that of silicon in traditional electronics. Because a spin-polarized current carries both electrical current and spin current, new effects, which are absent in traditional electronic devices are observed. During this proposal period, the effects of a spin-polarized current as it propagates through magnetic nanostructures will be studied. The principal investigator has been actively recruiting women and other minority students. In particular, two female graduate students, one of whom is an African American, will work with the principal investigator in this project.
磁性纳米结构和未来磁电子器件的发展关键取决于铁磁层的实质性自旋极化(自旋向上和自旋向下电子的数量差异),控制铁磁组件切换的能力,以及由于自旋极化传导和自旋极化电流的影响。 该提案侧重于磁性纳米结构中自旋极化电流的一些关键方面。 在金属,半导体和点接触隧道结的自旋扩散长度将使用点接触自旋光谱测量。 半金属CrO_2和Fe_3O_4中自旋极化的温度依赖性也将被详细研究。第二个方面的建议是调查新发现的自旋转移力矩在传统的铁磁体和半金属的影响。 这些研究将使用单层铁磁材料和由非磁性、铁磁和超导薄膜组成的多层材料。首席研究员和两名女研究生(其中一名是非洲裔美国人)将在约翰霍普金斯大学开展拟议中的研究。除了它们的电荷,电子的传输在电路中形成电流,由于一种称为自旋的固有性质,电子还可以表现为微小的磁体。 传统的电子器件将现代技术推向了电子时代,它们只利用电子的电荷。新一代的磁电子(或自旋电子)器件操纵电子的电荷和自旋。磁电子器件操纵的不是电流,而是自旋极化电流,其中携带电流的电子的自旋非常一致。 一个众所周知的磁电子设备,已经在我们所有的计算机中使用,是硬盘驱动器中的读头,使用具有巨大磁阻的材料。 未来磁电子器件的发展关键取决于如何利用和控制电子在器件中传输时的自旋。 这项提议的一个主要方面是开发和表征能够产生大量自旋极化电流的材料。 这些材料有望成为磁电子学的基础材料,其方式类似于传统电子学中的硅。 由于自旋极化电流携带电流和自旋电流,因此观察到传统电子器件中不存在的新效应。在此期间,将研究自旋极化电流通过磁性纳米结构传播时的影响。 首席研究员一直在积极招募妇女和其他少数民族学生。特别是,两名女研究生,其中一名是非洲裔美国人,将与该项目的主要研究员合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chia-Ling Chien其他文献
Chia-Ling Chien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chia-Ling Chien', 18)}}的其他基金
DMREF: Collaborative Research: Design and synthesis of novel materials for spin caloritronic devices
DMREF:合作研究:用于自旋热电子器件的新型材料的设计和合成
- 批准号:
1729555 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Spin Caloritronics and Skyrmion Materials
自旋热电子学和斯格明子材料
- 批准号:
1262253 - 财政年份:2013
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
MRSEC: Materials Research Science and Engineering Center
MRSEC:材料研究科学与工程中心
- 批准号:
0520491 - 财政年份:2005
- 资助金额:
$ 48万 - 项目类别:
Cooperative Agreement
Aquisition of a Dual-Beam Focused Ion Beam System
双束聚焦离子束系统的获得
- 批准号:
0320866 - 财政年份:2003
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Partial Support for Student Travel for the 47th Annual Conference on Magnetism & Magnetic Materials
部分支持学生参加第 47 届磁学年会的旅行
- 批准号:
0240835 - 财政年份:2002
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Magnetic Phenomena on the Nanometer Scale
纳米尺度的磁现象
- 批准号:
0101814 - 财政年份:2001
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Materials Research Science And Engineering Center
材料研究科学与工程中心
- 批准号:
0080031 - 财政年份:2000
- 资助金额:
$ 48万 - 项目类别:
Cooperative Agreement
Materials Research Science and Engineering Center on Nanostructured Materials
纳米结构材料研究科学与工程中心
- 批准号:
9632526 - 财政年份:1997
- 资助金额:
$ 48万 - 项目类别:
Cooperative Agreement
U.S.-China Cooperative Research: Magnetic Properties of Nanostructured Materials
中美合作研究:纳米结构材料的磁性
- 批准号:
9600472 - 财政年份:1996
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
相似海外基金
Highly efficient photocurrent and spin polarized current generation by cavity polariton
通过腔极化子产生高效光电流和自旋极化电流
- 批准号:
23H01942 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Chirality-Induced Spin Selectivity in Biology:The Role of Spin-Polarized Electron Current in Biological Electron Transport & Redox Enzymatic Activity
生物学中手性诱导的自旋选择性:自旋极化电子流在生物电子传输中的作用
- 批准号:
BB/X002810/1 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Research Grant
Chirality-Induced Spin Selectivity in Biology:The Role of Spin-Polarized Electron Current in Biological Electron Transport & Redox Enzymatic Activity
生物学中手性诱导的自旋选择性:自旋极化电子流在生物电子传输中的作用
- 批准号:
2314465 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Generation of arbitrary polarized single-photons by injection of spin electric current to a silicon carbide MOS device
通过向碳化硅 MOS 器件注入自旋电流生成任意偏振单光子
- 批准号:
22H01517 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Spin polarization and spin dependent shift current in electron systems irradiated by circularly polarized light
圆偏振光照射电子系统中的自旋极化和自旋相关位移电流
- 批准号:
20K03841 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Observation and control of valley-spin-polarized current at quantum confinement structures in graphene
石墨烯量子限域结构谷自旋极化电流的观测与控制
- 批准号:
18H01812 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
EAGER-Generation of Perpendicularly Polarized Spin Current from the Spin-Orbit Effects in Ferromagnetic Thin Film Structures for Memory Applications
存储器应用中的铁磁薄膜结构中的自旋轨道效应急切地产生垂直极化的自旋电流
- 批准号:
1738679 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Cooling a nanoscale device by a spin-polarized nonequilibrium current
通过自旋极化非平衡电流冷却纳米级器件
- 批准号:
198151470 - 财政年份:2011
- 资助金额:
$ 48万 - 项目类别:
Priority Programmes
Generation of high current and pico-second scale spin polarized beam by using transmission photocathode
利用透射光电阴极产生高电流、皮秒级自旋偏振光束
- 批准号:
23540340 - 财政年份:2011
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Highly-efficient spin-polarized current source using half-metallic ferromagnet/superconductor junctions.
使用半金属铁磁体/超导体结的高效自旋极化电流源。
- 批准号:
22560001 - 财政年份:2010
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)