NER: Nanofluid Characteristics in Pool Boiling

NER:水池沸腾中的纳米流体特性

基本信息

项目摘要

Proposal Number: CTS-0404174Principal Investigator: Ranganathan Kumar, Jayanta S. Kapat, and Sudipta SealAffiliation: University of Central FloridaProposal Title: NER: Nanofluid characteristics in Pool BoilingThis proposal was received in response to Nanoscale Science and Engineering initiative, NSF 03-043, category NER. Nanoparticle suspensions have recently been discovered to enhance the heat transfer of fluids. Relative to micron-sized suspensions, the nano-sized suspensions are much more resistant to settling in stationary fluids, which is a significant concern when micron-sized suspensions are considered. In addition, the thermal conductivity of the nanofluid increases as the size of the nanoparticles decreases. With this added benefit, it is worth exploring nanoparticle suspension as potential coolants in a number of engineering applications. The heat transfer characteristics are significantly better in a nanofluid, which increases the power capability provided to a system prior to catastrophic failure. Nanofluids may also offer a potential back fit to existing cooling systems without a major overhaul in several industries. Because of this potential, fundamental understanding of the physical mechanisms in particle motion and how the particles affect the critical heat flux need to be studied. This research will focus on quantifying and understanding the source of the greater than expected thermal conductivity of nanofluids. As part of this study, the following tasks will be performed. - Different diameter ceria and silica particles will be suspended in water and other fluids at different concentrations, and pool-boiling experiments will be done. Different levels of enhancement of CHF will be measured with corresponding measurements of thermal conductivity. - For each experiment, the deposition of the particles on the wire will be measured. These deposited wires will be imaged using an SEM or TEM at different concentrations to understand the role of nanofins on the heat transfer. - For selected experiments, fluorescence imaging will be done using a fluorescence microscope to track the nanoparticles and to understand the particle preference, agglomeration characteristics and affinity to materials at different temperature. Since the silica particles do not fluoresce, quantum dots will be used to dope silica for imaging at least in one experiment for a specific diameter.Since the boiling characteristics in pool boiling is similar to flow boiling, nanofluids have opened up exciting possibilities of raising chip power in electronic components, reducing fuel element surface temperature in pressurized water reactors, and reducing corrosion rates in cooling channels. The research is being funded by the Thermal Transport and Thermal Processing Program of the Chemical and Transport Systems Division.
提案编号:CTS-0404174主要研究者: Ranganathan Kumar,Jayanta S. Kapat和Sudipta SealAffiliation: 中佛罗里达大学提案标题:NER:池沸腾中的纳米流体特性此提案是响应纳米科学与工程倡议,NSF 03-043,类别NER而收到的。最近发现纳米颗粒悬浮液可以增强流体的传热。相对于微米尺寸的悬浮液,纳米尺寸的悬浮液对静止流体中的沉降具有更大的抵抗力,当考虑微米尺寸的悬浮液时,这是一个重要的问题。此外,纳米流体的热导率随着纳米颗粒的尺寸减小而增加。有了这个额外的好处,值得探索纳米颗粒悬浮液在许多工程应用中作为潜在的冷却剂。纳米流体的传热特性明显更好,这增加了在灾难性故障之前提供给系统的功率能力。纳米流体还可以为现有的冷却系统提供潜在的回装,而无需在几个行业进行大修。由于这种潜力,需要研究对粒子运动的物理机制以及粒子如何影响临界热通量的基本理解。这项研究将侧重于量化和理解纳米流体的热导率大于预期的来源。作为本研究的一部分,将执行以下任务。 - 不同直径的二氧化铈和二氧化硅颗粒将在不同的温度下悬浮在水和其他流体中。 浓度,并将进行池沸腾实验。不同程度的CHF增强 将与相应的热导率测量一起测量。 - 对于每个实验,将测量颗粒在导线上的沉积。这些沉积 将使用SEM或TEM在不同浓度下对导线进行成像,以了解 nanofins对热传递的影响。 - 对于选定的实验,将使用荧光显微镜进行荧光成像, 纳米颗粒,并了解颗粒的偏好,团聚特性和 在不同温度下对材料的亲和力。由于二氧化硅颗粒不发荧光, 由于池沸腾中的沸腾特性与流动沸腾相似,纳米流体开辟了提高电子元件中的芯片功率、降低压水反应堆中的燃料元件表面温度以及降低冷却通道中的腐蚀速率的令人兴奋的可能性。该研究由化学和运输系统部门的热运输和热处理计划资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ranganathan Kumar其他文献

Effect of laser power on conductivity and morphology of silver nanoparticle thin films prepared by a laser assisted electrospray deposition method
激光功率对激光辅助电喷雾沉积法制备银纳米粒子薄膜电导率和形貌的影响
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pawan Pathak;Eduardo Castillo;Ranganathan Kumar;A. Kar;H. Cho
  • 通讯作者:
    H. Cho
Effect of Geometry on Droplet Formation in a Microfluidic Flow-Focusing Device
几何形状对微流控流动聚焦装置中液滴形成的影响
  • DOI:
    10.2514/6.2013-3022
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Matharoo;Devavret Makkar;Amit Gupta;S. Hari;Magesh Ramadoss;Ranganathan Kumar
  • 通讯作者:
    Ranganathan Kumar
On the Impact of Liquid Drops on Immiscible Liquids
液滴对不混溶液体的影响
  • DOI:
    10.1115/icnmm2016-8059
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Eduardo Castillo;Ashkan Davanlou;P. K. Choudhury;Ranganathan Kumar
  • 通讯作者:
    Ranganathan Kumar
Effect of hydration layer and surface wettability in enhancing thermal conductivity of nanofluids
水化层和表面润湿性对增强纳米流体导热性的影响
  • DOI:
    10.1063/1.3270003
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    4
  • 作者:
    P. Sachdeva;Ranganathan Kumar
  • 通讯作者:
    Ranganathan Kumar
Towards sustainable food packaging: Optimization of suitable sorbitan surfactant for the development of PLA-based antifog film
迈向可持续食品包装:优化适合的脱水山梨糖醇酯表面活性剂以开发基于聚乳酸的防雾薄膜
  • DOI:
    10.1016/j.fpsl.2024.101368
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    10.600
  • 作者:
    Pallivathukkal Raju Aksalamol;Johnsy George;Mahammad Riyaz Guthige;Muhammed Navaf;Kappat Valiyapeediyekkal Sunooj;Ranganathan Kumar;Anil Dutt Semwal
  • 通讯作者:
    Anil Dutt Semwal

Ranganathan Kumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ranganathan Kumar', 18)}}的其他基金

Small Equipment: Infrared Thermography System for Temperature Measurements in Microchannel/Minichannel and Droplet
小型设备:用于微通道/迷你通道和液滴温度测量的红外热成像系统
  • 批准号:
    0853832
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: Extension of Knowledge to Small-Scale-Engineering: Integration, Interface and Interpretation (INT3)
REU 网站:小型工程知识扩展:集成、接口和解释 (INT3)
  • 批准号:
    0649076
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
IUCRC Site at UCF in Multiphase Transport Phenomena
多相传输现象中的 UCF IUCRC 站点
  • 批准号:
    0549205
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RET-Central Florida Space Science Institute (CFSSI)
RET-佛罗里达州中部空间科学研究所 (CFSSI)
  • 批准号:
    0401926
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Advancing active magnetic refrigeration with magnetocaloric hybrid nanofluid
利用磁热混合纳米流体推进主动磁制冷
  • 批准号:
    23K19097
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Nanofluid stickiness will transform the Energy and Biotechnology Industries
纳米流体粘性将改变能源和生物技术行业
  • 批准号:
    FT200100301
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Advanced control of heat transfer and fluid flow by magnetic nano-rod dispersion type magnetic functional nanofluid
磁性纳米棒分散型磁性功能纳米流体对传热和流体流动的高级控制
  • 批准号:
    20K04263
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Multiscale Simulations of Nanofluid Assembly for Smart Materials Design
职业:用于智能材料设计的纳米流体组装的多尺度模拟
  • 批准号:
    1944942
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Research Initiation Award: Stochastic and Deterministic Solutions to Unsteady Nanofluid Mixed Convection Problems
研究启动奖:非稳态纳米流体混合对流问题的随机和确定性解决方案
  • 批准号:
    1901316
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Optical manipulation of nanofluid network and optical neuron circuit
纳米流体网络和视神经元电路的光学操纵
  • 批准号:
    19K05302
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of evaporation, micro-explosion, and combustion of nanofluid fuel droplets
纳米流体燃料液滴的蒸发、微爆炸和燃烧研究
  • 批准号:
    1852046
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Study on convective and boiling heat transfer of nanofluid.
纳米流体对流传热和沸腾传热研究。
  • 批准号:
    17K06200
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of evaporation, micro-explosion, and combustion of nanofluid fuel droplets
纳米流体燃料液滴的蒸发、微爆炸和燃烧研究
  • 批准号:
    1704591
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Synthesis and characterization of thermal oil-graphene nanofluid for energy storage applications
用于储能应用的导热油-石墨烯纳米流体的合成和表征
  • 批准号:
    499492-2016
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Engage Grants Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了