Iterative Methods for Nonlinear Equations

非线性方程的迭代方法

基本信息

  • 批准号:
    0404537
  • 负责人:
  • 金额:
    $ 19.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-15 至 2008-05-31
  • 项目状态:
    已结题

项目摘要

The main topics of the proposed research are (1) the development and analysis of mesh-independent methods for computation of steady state solutions of time-dependent partial differential equations, especially those with nonsmooth nonlinearities, and (2) fast algorithms for continuation of the solutions of compact fixed point problems with respect to a parameter. The investigate will apply his results to chemical engineering, chemistry, environmental science, electrical engineering, nuclear engineering, and aeronautical engineering. Both phases of the project address a weakness of a conventional implementation of a globalized inexact Newton method, namely the inability to select among multiple solutions. Continuation methods use additional information, such as a physical parameter in the equation or the fact that the nonlinear equation is the steady state equation for a time-dependent problem, to guide the solver, and both improve the solver's robustness and increase the likelihood that the important solution or solutions will be found. The proposed research will analyze the robustness of these methods as computational grids are refined, how they perform if the nonlinearity is not differentiable, and how one can design fast algorithms for the corrector iteration which best exploit the functional analytic properties of the combination of the problem and the continuation method.Nonlinearity is common across all of science and engineering. Therefore, algorithms for solving nonlinear equations are fundamental components of many simulators and engineering design tools. The investigator will study solution methods for equations that depend on physical parameters, such as the voltage across a semiconductor device, the load on a mechanical structure, or the temperature of a chemical reaction. As such parameters change, the nature of the solution can vary significantly, and the performance of the simulator can be affected as well. The PI's research is directed at improving the performance of the algorithms and making the solvers more robust. His success will have an impact on the performance of simulator and design tools, and thereby accelerate the design cycle. The PI's and his students, through collaborations with several national laboratories and companies, will apply these results to problems in nano-scale electronics, chemical engineering, and aerospace.
本研究的主要课题是:(1)发展和分析与网格无关的计算时变偏微分方程稳态解的方法,特别是那些具有非光滑非线性的方法;(2)关于参数的紧不动点问题解的快速延拓算法。研究结果将应用于化学工程、化学、环境科学、电气工程、核工程、航空工程等领域。项目的两个阶段都解决了全球化不精确牛顿方法的传统实现的弱点,即无法在多个解决方案中进行选择。延拓方法使用附加信息,如方程中的物理参数或非线性方程是时间相关问题的稳态方程这一事实,来指导求解器,既提高了求解器的鲁棒性,又增加了找到重要解的可能性。该研究将分析这些方法在计算网格细化时的鲁棒性,当非线性不可微时它们的表现,以及如何设计快速的校正迭代算法,以最好地利用问题和延拓方法相结合的泛函解析特性。非线性在所有的科学和工程中都很常见。因此,求解非线性方程的算法是许多模拟器和工程设计工具的基本组成部分。研究者将研究依赖于物理参数的方程的求解方法,如半导体器件的电压、机械结构上的负载或化学反应的温度。随着这些参数的变化,解决方案的性质可能会发生显著变化,并且模拟器的性能也会受到影响。PI的研究旨在提高算法的性能,使求解器更加鲁棒。他的成功将对模拟器和设计工具的性能产生影响,从而加快设计周期。通过与几个国家实验室和公司的合作,PI和他的学生将把这些结果应用于纳米级电子、化学工程和航空航天领域的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carl Kelley其他文献

Carl Kelley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carl Kelley', 18)}}的其他基金

Anderson Accleration
安德森加速
  • 批准号:
    1906446
  • 财政年份:
    2019
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Standard Grant
Iterative Methods for Nonlinear Equations and Optimization
非线性方程和优化的迭代方法
  • 批准号:
    1406349
  • 财政年份:
    2014
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II--Revolutionary Advances in Modeling Transport Phenomena in Porous Medium Systems
合作研究:CDI-Type II——多孔介质系统输运现象建模的革命性进展
  • 批准号:
    0941253
  • 财政年份:
    2009
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Standard Grant
Iterative Methods for Nonlinear Equations and Optimization
非线性方程和优化的迭代方法
  • 批准号:
    0707220
  • 财政年份:
    2007
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Standard Grant
ITR/AP: Collaborative Research: Sampling Methods for Optimization and Control of Subsurface Contamination
ITR/AP:合作研究:优化和控制地下污染的采样方法
  • 批准号:
    0112542
  • 财政年份:
    2001
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Standard Grant
Nonlinear Equations and Optimization
非线性方程和优化
  • 批准号:
    0070641
  • 财政年份:
    2000
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Standard Grant
Nonlinear Equations and Bound Costrained Optimization
非线性方程和有界约束优化
  • 批准号:
    9700569
  • 财政年份:
    1997
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Iterative Methods for Equations and Optimization
数学科学:方程和优化的迭代方法
  • 批准号:
    9321938
  • 财政年份:
    1994
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Optimization Problems in Function Spaces
数学科学:函数空间中的优化问题
  • 批准号:
    9024622
  • 财政年份:
    1991
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Conference on Numerical Optimization Methods in Differential Equations and Control; July 15-17, 1991, Raleigh, North Carolina
数学科学:微分方程和控制中的数值优化方法会议;
  • 批准号:
    9017572
  • 财政年份:
    1991
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ATD: Algorithm, Analysis, and Prediction for Nonlinear and Non-Stationary Signals via Data-Driven Iterative Filtering Methods
ATD:通过数据驱动的迭代滤波方法对非线性和非平稳信号进行算法、分析和预测
  • 批准号:
    1830225
  • 财政年份:
    2018
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Continuing Grant
Iterative Methods for Nonlinear Equations and Optimization
非线性方程和优化的迭代方法
  • 批准号:
    1406349
  • 财政年份:
    2014
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Standard Grant
Development of image quality measurement methods for nonlinear CT images, and elucidation of iterative reconstruction methods and their realities.
非线性 CT 图像图像质量测量方法的发展,迭代重建方法及其现实的阐明。
  • 批准号:
    24601003
  • 财政年份:
    2012
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Iterative Methods for Nonlinear Equations and Optimization
非线性方程和优化的迭代方法
  • 批准号:
    0707220
  • 财政年份:
    2007
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Standard Grant
Qualitative theory of nonlinear systems and monotone iterative methods
非线性系统的定性理论和单调迭代方法
  • 批准号:
    106000-1994
  • 财政年份:
    1997
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Discovery Grants Program - Individual
Iterative Methods for Large Scale Nonlinear and Linear Systems
大规模非线性和线性系统的迭代方法
  • 批准号:
    9727128
  • 财政年份:
    1997
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Standard Grant
Qualitative theory of nonlinear systems and monotone iterative methods
非线性系统的定性理论和单调迭代方法
  • 批准号:
    106000-1994
  • 财政年份:
    1996
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Discovery Grants Program - Individual
Qualitative theory of nonlinear systems and monotone iterative methods
非线性系统的定性理论和单调迭代方法
  • 批准号:
    106000-1994
  • 财政年份:
    1995
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Discovery Grants Program - Individual
Qualitative theory of nonlinear systems and monotone iterative methods
非线性系统的定性理论和单调迭代方法
  • 批准号:
    106000-1994
  • 财政年份:
    1994
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Sciences: Iterative Methods for Large-Scale NonLinear and Linear Systems
数学科学:大规模非线性和线性系统的迭代方法
  • 批准号:
    9400217
  • 财政年份:
    1994
  • 资助金额:
    $ 19.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了