Wave Turbulence: A Wealth of Applications and a Rich Paradigm for Turbulent Systems

波湍流:湍流系统的丰富应用和丰富范式

基本信息

  • 批准号:
    0404577
  • 负责人:
  • 金额:
    $ 27.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2007-08-31
  • 项目状态:
    已结题

项目摘要

Abstract: DMS-0404577A Newell and V ZakharovWave Turbulence: A Wealth of Applications and a Rich Paradigm for Turbulent SystemsWave turbulence is the study of the statistical behavior of solutions of field equations, usually conservative and Hamiltonian, describing weakly nonlinear and dispersive wave systems in the presence of sources and sinks. It has many applications, from ocean waves to magnetohydrodynamics and optics. But it is not only of interest because of applications. It provides a nontrivial tool for examining the long time solution behavior of the underlying Hamiltonian partial di_erential equations. It is extraordinarily rich in that, save for very rare circumstances, the theory is not valid for all scales. We have recently developed an understanding for how to predict the breakdown ranges in whichrandomly occurring, robust and fully nonlinear coherent structures occur. These lead to anomalous and intermittent behaviors whose signatures can be seen dramatically in high order moments and sometimes even in low order ones. It also leads to large deviations from Gaussian statistics. Because in several cases it is possible to identify and understand the reasons for the emergence of the randomly occurring structures, wave turbulence provides a nontrivial paradigm for investigating the guiding principles governing turbulent and nonequilibrium systems in general.Wave turbulence has a wealth of applications and is also a most useful paradigm for the study of nonequilibrium systems. Therefore, it is an excellent training tool for students and young scientists because many solutions and bulk properties are calculable, thus helping those new to the field to gain a concrete understanding of central issues. The two PI's have been linked with formidable stables of young researchers throughout their professional lives and have produced more than 20 Ph.D's who are actively contributing to the field of nonlinear science. Further, we include in this proposal several concrete actions we plan to take in order to facilitate the training of new researchers, to collaborate with teams throughout the world and to disseminate new results.
摘要:DMS-0404577 A纽韦尔和V Zakharov波动湍流:丰富的应用和丰富的湍流系统范例波动湍流是场方程解的统计行为的研究,通常是保守的和哈密顿的,描述存在源和汇的弱非线性和色散波系统。它有许多应用,从海浪到磁流体力学和光学。但它不仅仅是因为应用程序而感兴趣。它提供了一个非平凡的工具,检查的长期行为的哈密顿偏微分方程。它的丰富之处在于,除了非常罕见的情况之外,这个理论并不是对所有尺度都有效。我们最近已经发展了一种理解,如何预测的崩溃范围内随机发生的,强大的和完全非线性相干结构发生。这些导致异常和间歇性的行为,其签名可以在高阶矩中显着地看到,有时甚至在低阶矩中也可以看到。这也导致了高斯统计的大偏差。由于在某些情况下可以识别和理解随机结构出现的原因,波动湍流为研究一般湍流和非平衡系统的指导原则提供了一个重要的范式,波动湍流有着丰富的应用,也是研究非平衡系统最有用的范式。因此,它是学生和年轻科学家的一个很好的培训工具,因为许多解决方案和整体性质是可计算的,从而帮助那些新的领域,以获得核心问题的具体理解。这两个PI的一直与年轻研究人员的强大马厩在他们的职业生涯,并产生了20多个博士谁是积极贡献的非线性科学领域。此外,我们在本提案中列入了我们计划采取的几项具体行动,以促进新研究人员的培训,与世界各地的团队合作,并传播新成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Newell其他文献

Innovations in user sensitive design, research and development

Alan Newell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Newell', 18)}}的其他基金

Phyllotactic patterns and pattern quarks and leptons
叶序图案和图案夸克和轻子
  • 批准号:
    1308862
  • 财政年份:
    2013
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Continuing Grant
Patterns in Nature and in the Laboratory
自然界和实验室中的模式
  • 批准号:
    0906024
  • 财政年份:
    2009
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Standard Grant
Wave Turbulence: Computational and Theoretical Investigations of a Story Far From Over
波浪湍流:一个远未结束的故事的计算和理论研究
  • 批准号:
    0809189
  • 财政年份:
    2008
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Standard Grant
Requirements Gathering for an inclusive Digital Economy
包容性数字经济的需求收集
  • 批准号:
    EP/F066848/1
  • 财政年份:
    2008
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Research Grant
An inclusive digital economy supporting older and disabled people and other digitally disenfranchised groups
支持老年人、残疾人和其他被数字化剥夺权利的群体的包容性数字经济
  • 批准号:
    EP/G002118/1
  • 财政年份:
    2008
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Research Grant
Patterns in Nature and In the Laboratory
自然界和实验室中的模式
  • 批准号:
    0501243
  • 财政年份:
    2005
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Standard Grant
Global Description of Patterns Far from Onset
远未开始的模式的全球描述
  • 批准号:
    0202440
  • 财政年份:
    2002
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Pattern Formation, Turbulence and Singularities in PDEs
数学科学:偏微分方程中的模式形成、湍流和奇异性
  • 批准号:
    9302013
  • 财政年份:
    1994
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Southwest Regional Institute in the Mathematical Sciences (SWRIMS)
数学科学:西南地区数学科学研究所(SWRIMS)
  • 批准号:
    9412873
  • 财政年份:
    1994
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Standard Grant
U.S.-Chile Cooperative Research: 5th International Workshop on Instabilities and Nonequilibrium Structures; Santiago, Chile, December, 1993
美国-智利合作研究:第五届不稳定性和非平衡结构国际研讨会;
  • 批准号:
    9317016
  • 财政年份:
    1993
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Standard Grant

相似海外基金

Characterizing Transition to Turbulence in Pulsatile Pipe Flow
表征脉动管流中的湍流转变
  • 批准号:
    2335760
  • 财政年份:
    2024
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Standard Grant
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
  • 批准号:
    2337399
  • 财政年份:
    2024
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Standard Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
  • 批准号:
    2414424
  • 财政年份:
    2024
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Standard Grant
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
  • 批准号:
    2344156
  • 财政年份:
    2024
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Standard Grant
Turbulence Intermittency for Cloud Physics (TITCHY)
云物理的湍流间歇性 (TITCHY)
  • 批准号:
    EP/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Research Grant
Understanding Pulsatile Helical Flow: Scaling, Turbulence, and Helicity Control
了解脉动螺旋流:缩放、湍流和螺旋度控制
  • 批准号:
    2342517
  • 财政年份:
    2024
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Standard Grant
CAREER: Characterization of Turbulence in Urban Environments for Wind Hazard Mitigation
职业:城市环境湍流特征以减轻风灾
  • 批准号:
    2340755
  • 财政年份:
    2024
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347422
  • 财政年份:
    2024
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Standard Grant
Stochastic Modeling of Turbulence over Rough Walls: Theory, Experiments, and Simulations
粗糙壁上湍流的随机建模:理论、实验和模拟
  • 批准号:
    2412025
  • 财政年份:
    2024
  • 资助金额:
    $ 27.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了