Phyllotactic patterns and pattern quarks and leptons
叶序图案和图案夸克和轻子
基本信息
- 批准号:1308862
- 负责人:
- 金额:$ 24.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The arrangements of phylla (leaves, flowers, seeds, bracts) on plants and their surface morphologies have intrigued and mystified scientists for over four hundred years. A special challenge has been to understand why on many plants such as the sunflower, the seeds lie on families of clockwise and counterclockwise spirals and that the numbers in each family belong not just to the integers but to a special subset known as Fibonacci numbers generated by starting with any two integers and defining each successive member as the sum of the previous two. Google sunflower images and count for yourselves. You will encounter beautiful sunflower seed heads with 21, 34 and 55 family spirals. Count them. One can generate this, the most common, Fibonacci sequence by beginning with 1,2 and obtain 1,2,3,5,8,13,21,34,55... .Attempts to explain phyllotactic configurations fall into two categories. The teleological approach devises rules for positioning the next seed or flower so as to pack the seeds in some optimal fashion and is philosophically equivalent to saying the reason tigers have stripes is that it provides better camouflage. Now that may be the reason that striped tigers had an evolutionary advantage over unstriped ones, but nature has to use plain old physical and biochemical processes to achieve these outcomes. In plants, the mechanisms by which phylla are made involve instabilities which lead to a non uniform distribution of the hormone auxin (phylla initiation would occur at maxima of the auxin field) and non uniform stress fields in the vicinity of the plant's growth tips. The corresponding pattern then propagates as a front and creates potential sites for phylla initiation. What we have obtained is some stunning new results which demonstrate that the locations of the maxima of the instability generated pattern fields coincide with the point configurations generated by the teleologically inspired models. This suggests the exciting new idea that in many circumstances nstability generated patterns may be the mechanisms by which plants and other organisms can pursue optimal strategies. It also suggests alternative approaches to investigate many of the open challenges in optimal packing.
植物的叶(叶、花、种子、苞片)的排列及其表面形态已经吸引了科学家四百多年。一个特殊的挑战是理解为什么在向日葵等许多植物上,种子位于顺时针和逆时针螺旋家族中,并且每个家族中的数字不仅属于整数,而且属于一个称为斐波那契数的特殊子集,该子集是通过从任意两个整数开始并将每个连续成员定义为前两个的和而生成的。谷歌向日葵图片和计数为自己。你会遇到美丽的向日葵种子头与21,34和55家庭螺旋。数数我们可以从1,2开始生成这个最常见的斐波那契数列,并得到1,2,3,5,8,13,21,34,55. 试图解释叶序构型的尝试分为两类。目的论的方法设计了放置下一粒种子或花的规则,以便以某种最佳方式包装种子,在理论上相当于说老虎有条纹的原因是它提供了更好的伪装。这可能就是为什么条纹虎比无条纹虎具有进化优势的原因,但大自然必须使用普通的物理和生物化学过程来实现这些结果。在植物中,形成叶的机制涉及不稳定性,其导致激素生长素的不均匀分布(叶起始将发生在生长素场的最大值处)和植物生长尖端附近的不均匀应力场。相应的模式,然后传播作为一个前线,并创造潜在的网站叶开始。我们所得到的是一些令人惊叹的新结果,这些结果表明,不稳定性产生的图案场的最大值的位置与目的论启发的模型产生的点配置相一致。这提出了一个令人兴奋的新想法,即在许多情况下,不稳定性产生的模式可能是植物和其他生物体追求最佳策略的机制。它还提出了其他方法来研究最佳包装中的许多开放挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Newell其他文献
Innovations in user sensitive design, research and development
- DOI:
10.1007/s10209-010-0202-z - 发表时间:
2010-07-25 - 期刊:
- 影响因子:2.700
- 作者:
Ray Adams;Alan Newell;Peter Gregor - 通讯作者:
Peter Gregor
Alan Newell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Newell', 18)}}的其他基金
Patterns in Nature and in the Laboratory
自然界和实验室中的模式
- 批准号:
0906024 - 财政年份:2009
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Wave Turbulence: Computational and Theoretical Investigations of a Story Far From Over
波浪湍流:一个远未结束的故事的计算和理论研究
- 批准号:
0809189 - 财政年份:2008
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Requirements Gathering for an inclusive Digital Economy
包容性数字经济的需求收集
- 批准号:
EP/F066848/1 - 财政年份:2008
- 资助金额:
$ 24.52万 - 项目类别:
Research Grant
An inclusive digital economy supporting older and disabled people and other digitally disenfranchised groups
支持老年人、残疾人和其他被数字化剥夺权利的群体的包容性数字经济
- 批准号:
EP/G002118/1 - 财政年份:2008
- 资助金额:
$ 24.52万 - 项目类别:
Research Grant
Patterns in Nature and In the Laboratory
自然界和实验室中的模式
- 批准号:
0501243 - 财政年份:2005
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Wave Turbulence: A Wealth of Applications and a Rich Paradigm for Turbulent Systems
波湍流:湍流系统的丰富应用和丰富范式
- 批准号:
0404577 - 财政年份:2004
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Global Description of Patterns Far from Onset
远未开始的模式的全球描述
- 批准号:
0202440 - 财政年份:2002
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Pattern Formation, Turbulence and Singularities in PDEs
数学科学:偏微分方程中的模式形成、湍流和奇异性
- 批准号:
9302013 - 财政年份:1994
- 资助金额:
$ 24.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Southwest Regional Institute in the Mathematical Sciences (SWRIMS)
数学科学:西南地区数学科学研究所(SWRIMS)
- 批准号:
9412873 - 财政年份:1994
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
U.S.-Chile Cooperative Research: 5th International Workshop on Instabilities and Nonequilibrium Structures; Santiago, Chile, December, 1993
美国-智利合作研究:第五届不稳定性和非平衡结构国际研讨会;
- 批准号:
9317016 - 财政年份:1993
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
相似海外基金
Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
- 批准号:
10508305 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Patterns in Women's Unmet Sexual and Reproductive Healthcare Needs Over the Life Course
女性一生中未满足的性和生殖保健需求的模式
- 批准号:
10677345 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Demographic Patterns of Eugenic Sterilization in Five U.S. States: Mixed Methods Investigation of Reproductive Control of the 'Unfit'
美国五个州优生绝育的人口统计模式:“不健康者”生殖控制的混合方法调查
- 批准号:
10640886 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Nurse-Led Interventions in Pediatric Critical Care: Training in Pediatric Sleep Health, Delirium, and Multi-Site Research
护士主导的儿科重症监护干预措施:儿科睡眠健康、谵妄和多中心研究培训
- 批准号:
10751813 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
- 批准号:
10722568 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Modifiable Determinants of Disparities in Multiple Myeloma Treatment Patterns
多发性骨髓瘤治疗模式差异的可改变决定因素
- 批准号:
10578960 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Examining patterns of opioid overdose hotspots and opioid treatment deserts in California
检查加利福尼亚州阿片类药物过量热点和阿片类药物治疗沙漠的模式
- 批准号:
10679608 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Oral Disease Prevention Model in Long Term Care: WHO Systems Thinking Framework
长期护理中的口腔疾病预防模型:世界卫生组织系统思维框架
- 批准号:
10664642 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别: