Stability and Existence of Nonlinear Waves

非线性波的稳定性和存在性

基本信息

  • 批准号:
    0405066
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT: 0405066Walter Strauss, Brown UniversityStability and existence of nonlinear wavesThe purpose of this project is to study mathematical models of nonlinear waves that occur in the most fundamentaltheories of fluids, of plasmas, of semiconductors and of other branches of physical science. In particular, the mathematical construction of exact periodic and solitary traveling water waves with vorticity will be proven, both with and without surfacetension. Stability and instability phenomena will be investigatedfor motions of ideal fluids and physical plasmas. Electric and magnetic effects on the stability of charged particles will be studiedin the context of the kinetic theory of plasmas. Stability problems for a variety of other kinds of waves will also be explored.Energy conserving waves of marginal stability, which occur in many of these scientific theories, will be emphasized. Methods of mathematical analysis are the primary tool employed in the investigations. The rigorous mathematicsmakes it feasible to make stable numerical computations and to understand thequalitative features of the nonlinear waves.Nonlinear waves are encountered everywhere in the natural world. In thisproject we study several kinds of such nonlinear waves that are well described by mathematics, but where the mathematical equations are extremely difficult to solve.One of our objectives is to study water waves that may occur in the ocean, and to understand how they can form eddies or whirlpools and how they can become turbulent.The knowledge of specific kinds of solutions to the mathematical equations has an impact on our fundamental understanding of ocean waves and currents. Another objective is to study semiconducting materials from which computing devices are manufactured. We will analyze the basic equations that describe how the electrons can move inside and at the edges of the material. A third objective is to understand the behavior of charged particles in the vicinity of the earth's magnetic field, which affect satellitecommunications and the health of astronauts. A fourth objective of the project is the training of graduate and undergraduate students and postdoctoral fellows in the precise mathematical analysis of applied scientific problems such as nonlinear waves.
摘要:0405066沃尔特·施特劳斯,布朗大学非线性波的稳定性和存在性这个项目的目的是研究非线性波的数学模型,这些非线性波发生在流体、等离子体、半导体和物理科学的其他分支的最基本的理论中。特别是,精确的周期性和孤立的行波与涡量的数学结构将被证明,无论有和没有表面张力。稳定性和不稳定性现象将研究理想流体和物理等离子体的运动。将在等离子体动力学理论的范围内研究电和磁对带电粒子稳定性的影响。本课程也将探讨其他各种波的稳定性问题,并将强调在许多科学理论中出现的边际稳定性的能量守恒波。数学分析方法是调查中采用的主要工具。非线性波在自然界中随处可见,严格的几何学使得进行稳定的数值计算和了解非线性波的定性特征成为可能。 在这个项目中,我们研究了几种可以用数学很好地描述的非线性波,但其中的数学方程非常难以求解。我们的目标之一是研究可能发生在海洋中的水波,了解它们是如何形成漩涡或漩涡池的,以及它们是如何变成湍流的。了解海浪和洋流。另一个目标是研究制造计算设备的半导体材料。 我们将分析描述电子如何在材料内部和边缘移动的基本方程。第三个目标是了解带电粒子在地球磁场附近的行为,这会影响卫星通信和宇航员的健康。该项目的第四个目标是培训研究生、本科生和博士后研究员,对非线性波等应用科学问题进行精确的数学分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Walter Strauss其他文献

Das Verhalten des Bestandstromes des Menschen bei Ermüdender Körperlicher Arbeit
Über den Bestandstrom des Menschlichen Körpers
  • DOI:
    10.1007/bf01738359
  • 发表时间:
    1929-03-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Walter Strauss;Carl Müller
  • 通讯作者:
    Carl Müller
Zur Physiologie des Arbeitsklimas
Über Eine Neue Methode zur Messung Körperlicher Ermüdung
気体放電を記述する Morrow モデルII:大域分岐解析
描述气体放电的 Morrow 模型 II:全局分岔分析
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    鈴木政尋;Walter Strauss
  • 通讯作者:
    Walter Strauss

Walter Strauss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Walter Strauss', 18)}}的其他基金

Derivation of mean-field equations and dynamics of coherent structures in nonlinear dispersive PDE
非线性色散偏微分方程中平均场方程的推导和相干结构动力学
  • 批准号:
    1500106
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference on Hyperbolic Conservation Laws and Continuum Mechanics
双曲守恒定律和连续介质力学会议
  • 批准号:
    1036656
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical theory of water waves and plasmas
水波和等离子体的数学理论
  • 批准号:
    1007960
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Stability Theory of Nonlinear Waves
非线性波的稳定性理论
  • 批准号:
    0071838
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
U.S.-France Cooperative Research: Modeling, Analysis and Simulation of Hybrid Quantum Models with Applications to Semiconductor Devices
美法合作研究:混合量子模型的建模、分析和仿真及其在半导体器件中的应用
  • 批准号:
    9815423
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Stability Theory of Nonlinear Waves
非线性波的稳定性理论
  • 批准号:
    9703695
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Linear and Non-Linear Waves
线性和非线性波
  • 批准号:
    9322146
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Linear and Non-Linear Waves
数学科学:线性和非线性波
  • 批准号:
    9023864
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Linear and Nonlinear Waves
数学科学:线性和非线性波
  • 批准号:
    8722331
  • 财政年份:
    1988
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonlinear Wave Equations; U.S.-Spain Program
非线性波动方程;
  • 批准号:
    8603265
  • 财政年份:
    1986
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
  • 批准号:
    2306258
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    571735-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    561540-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Existence and Stability Analysis for Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题的存在性和稳定性分析
  • 批准号:
    2054689
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
  • 批准号:
    RGPIN-2016-04195
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
  • 批准号:
    RGPIN-2016-04195
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
  • 批准号:
    RGPIN-2016-04195
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了