Quaternionic geometry and elliptic genus
四元几何和椭圆亏格
基本信息
- 批准号:0405281
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-15 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0405281Principal Investigator: Haydee HerreraThis research proposal focuses on the study of the topology ofmanifolds with finite second homotopy group and the DifferentialGeometry of quaternionic- Kaehler manifolds. The emphasis of theproject is on the determination of analytical and topologicalinvariants of the manifolds, such as the signature, A-roof-genusand elliptic genera. Following the evidence from our previousresearch, we propose to apply the aforementioned theory toconcrete Geometric Analysis/Differential Geometryproblems. Furthermore, this study has applications to AlgebraicGeometry (via twistor transform) and to Theoretical Physics,since the manifolds under consideration are of interest in sigmamodels and in String Theory.My research interests are concerned with the study of certainspaces of large dimension, called quaternion-Kaehlermanifolds. In the quest for understanding the universe,physicists have developed many and very sophisticated models,such as Relativity Theory and more recently String Theory, thathelp explain and predict phenomena observed in the Universe. Oneof the leading physicists of our times, E. Witten, discoveredthat quaternion-Kaehler manifolds appear in the formulation ofcertain Quantum Field Theories. My research focuses on findingthe possible shapes and properties of quaternion- Kaehlermanifolds.
摘要奖项:DMS-0405281 首席研究员:Haydee Herrera 本研究计划重点研究具有有限第二同伦群的流形拓扑和四元-凯勒流形的微分几何。该项目的重点是确定流形的分析和拓扑不变量,例如签名、A-屋顶亏格和椭圆亏格。根据我们之前研究的证据,我们建议将上述理论应用于具体的几何分析/微分几何问题。此外,这项研究还应用于代数几何(通过扭量变换)和理论物理,因为所考虑的流形在西格玛模型和弦理论中很有趣。我的研究兴趣涉及某些大维空间的研究,称为四元数-凯勒流形。在寻求理解宇宙的过程中,物理学家开发了许多非常复杂的模型,例如相对论和最近的弦理论,有助于解释和预测在宇宙中观察到的现象。 我们这个时代的一位顶尖物理学家 E. Witten 发现四元数-凯勒流形出现在某些量子场论的公式中。 我的研究重点是寻找四元数凯勒流形的可能形状和性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haydee Herrera其他文献
Haydee Herrera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haydee Herrera', 18)}}的其他基金
IV Latin-American Congress on Lie Groups and Geometry
第四届拉丁美洲李群和几何大会
- 批准号:
1236594 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elliptic Cohomology, Geometry, and Physics
椭圆上同调、几何和物理
- 批准号:
2205835 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
- 批准号:
RGPIN-2016-04195 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
- 批准号:
RGPIN-2016-04195 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
A comprehensive study of elliptic algebras and new development of noncommutative algebraic geometry
椭圆代数综合研究及非交换代数几何新进展
- 批准号:
20K14288 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometry of autoequivalence groups via isometric actions on the space of stability conditions
通过稳定条件空间上的等距作用的自等价群的几何
- 批准号:
20K22310 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Nonlinear partial differential equations of mixed elliptic-hyperbolic type in geometry and related areas
几何及相关领域混合椭圆双曲型非线性偏微分方程
- 批准号:
2271985 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
Elliptic representation theory: the study of symmetries across geometry, algebra and physics
椭圆表示理论:跨几何、代数和物理学的对称性研究
- 批准号:
DE190101222 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
- 批准号:
RGPIN-2016-04195 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
- 批准号:
RGPIN-2016-04195 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Interactions of Derived Moduli Spaces and Gerbes with Elliptic Genera in Complex Geometry
复杂几何中导出模空间和Gerbes与椭圆属的相互作用
- 批准号:
376202359 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Fellowships