RUI: Differential Geometry of Submanifolds

RUI:子流形的微分几何

基本信息

  • 批准号:
    0405529
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-15 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0405529Principal Investigator: Thomas E. CecilThe goal of this proposal is to study submanifolds of Euclideanspace and the unit sphere which have special curvatureproperties. Of particular interest are isoparametrichypersurfaces, which have constant principal curvatures, andDupin hypersurfaces, which have the property that each principalcurvature is constant along each of its curvature surfaces.Although these important classes of hypersurfaces have beenstudied since the nineteenth century, many natural problemsremain open at this time. The principal investigator and hiscollaborators, Quo-Shin Chi and Gary Jensen of WashingtonUniversity, will employ the method of moving frames on Legendresubmanifolds in Lie sphere geometry in their research on theseproblems. This method is applicable to the study of anysubmanifold in Euclidean space, not just to those mentioned here,and it has been used successfully by the principal investigatorand his collaborators in previous research.Dupin hypersurfaces have been studied extensively since theintroduction of the cyclides of Dupin in 1822, and great progresshas been made over the past 25 years in their classification.Dupin hypersurfaces have played a major role in variousmathematical theories, such as the theory of taut embeddings, thestudy of Hamiltonian systems of hydrodynamic type, and the theoryof higher-dimensional Laplace invariants. The cyclides of Dupinhave also apperared in recent papers on computer aided geometricdesign. The study of isoparametric hypersurfaces in spheres wasinitiated by the renowned French mathematician, Elie Cartan, inthe 1930's, and many mathematicians have made significantcontributions to this beautiful theory. Included in the class ofisoparametric hypersurfaces and their focal sets are many famousgeometric objects, such as the Veronese surface and theClifford-Stiefel manifolds, which have been studied by researchmathematicians from several different points of view. In termsof Research in Undergraduate Institutions (RUI) activities andthe broader impact of the proposal, the principal investigatorplans to continue his successful program of new coursedevelopment and mentoring of individual students. Over the pastfifteen years, this has resulted in 13 honors theses and a totalof 25 students in geometry courses, who have attended or plan toattend graduate school in mathematics or related fields.
摘要奖:DMS-0405529主要研究者:托马斯E. Cecil本文的目标是研究欧氏空间和单位球面中具有特殊曲率性质的子流形。 特别令人感兴趣的是等参超曲面,它具有恒定的主曲率,和Dupin超曲面,它具有每个主曲率沿其每个曲率曲面都是恒定的沿着的性质。虽然这些重要的超曲面类自19世纪以来一直在研究,许多自然问题仍然开放在这个时候。 主要研究者和他的合作者,华盛顿大学的Quo-Shin Chi和加里詹森,将在他们对这些问题的研究中使用李球几何中Legendre子流形上的移动标架方法。 这种方法不仅适用于这里所提到的那些子流形,而且也适用于欧氏空间中任何子流形的研究,并且它已经被主要的研究者和他的合作者成功地用于以前的研究中。自从1822年Dupin的圆线被引入以来,Dupin超曲面得到了广泛的研究,Dupin超曲面在各种数学理论中发挥了重要作用,如紧嵌入理论,流体动力学型哈密顿系统的研究和高维拉普拉斯不变量理论。Dupin圆线也出现在最近的计算机辅助几何设计论文中。 球体等参超曲面的研究是由法国著名数学家埃利·卡尔丹(Elie Cartan)在20世纪30年代发起的,许多数学家对这一美丽的理论做出了重大贡献。 在非参数超曲面及其焦集类中,有许多著名的几何对象,如Veronese曲面和Clifford-Stiefel流形,它们已经被数学家从不同的角度进行了研究。 在本科院校研究(RUI)活动和该提案的更广泛影响方面,校长计划继续他成功的新课程开发和个别学生指导计划。在过去的十五年里,这导致了13个荣誉论文和25名学生在几何课程,谁已经或计划参加研究生院在数学或相关领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Cecil其他文献

Outcomes of cytoreductive surgery and hyperthermic intra-peritoneal chemotherapy for peritoneal malignancy in Jehovah’s witnesses: Single centre 20 year experience
  • DOI:
    10.1016/j.ejso.2021.12.320
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Vivekanand Sharma;Faheez Mohamed;Joshua Franklyn;Vasanth Mark Samuel;Alexios Tzivanakis;Sanjeev Dayal;Thomas Cecil;Brendan Moran
  • 通讯作者:
    Brendan Moran
Asymptomatic deep vein thrombosis following cytoreductive surgery and Hyperthermic intraperitoneal chemotherapy: Results of routine postoperative lower limb Doppler studies in 387 patients.
  • DOI:
    10.1016/j.ejso.2021.12.147
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joshua Franklyn;Abdulraheim Abu;vivekanand Sharma;Vasanth Mark Samuel;Dayal Sanjeev;Alexios Tzivanakis;Thomas Cecil;Faheez Mohamed;Brendan Moran
  • 通讯作者:
    Brendan Moran
Preparation, characterization, and simulation of continuous stationary phase gradients on butyl functionalized liquid chromatography columns for protein and peptide separations
用于蛋白质和肽分离的丁基官能化液相色谱柱上连续固定相梯度的制备、表征及模拟
  • DOI:
    10.1016/j.chroma.2025.466048
  • 发表时间:
    2025-08-16
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Thomas Cecil;Ash K. Young;Sarah C. Rutan;Maryanne M. Collinson
  • 通讯作者:
    Maryanne M. Collinson

Thomas Cecil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Cecil', 18)}}的其他基金

Applications of Lie Sphere Geometry to Submanifold Theory
李球几何在子流形理论中的应用
  • 批准号:
    0071390
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: RUI: Dupin Submanifolds
数学科学:RUI:杜宾子流形
  • 批准号:
    9504535
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Differential Geometry of Submanifolds
数学科学:子流形的微分几何
  • 批准号:
    9303218
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Mathematical Sciences: RUI: Geometry of Submanifolds
数学科学:RUI:子流形几何
  • 批准号:
    9101961
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Video Tachistoscope
视频行车记录仪
  • 批准号:
    8960368
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: RUI: Lie Sphere Geometry and Dupin Submanifolds
数学科学:RUI:李球几何和杜宾子流形
  • 批准号:
    8907366
  • 财政年份:
    1989
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Mathematical Sciences: Applications of Lie Sphere Geometry to the Study of Taut and Dupin Submanifolds
数学科学:李球几何在张紧子流形和杜宾子流形研究中的应用
  • 批准号:
    8706015
  • 财政年份:
    1987
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Industry University Cooperative: Automated Tactile Sensing
产学合作:自动触觉传感
  • 批准号:
    8216572
  • 财政年份:
    1983
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Focal Sets and Taut Immersions
焦点设置和紧张沉浸
  • 批准号:
    7607044
  • 财政年份:
    1976
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
  • 批准号:
    23H00083
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
  • 批准号:
    2246031
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Discrete differential geometry, Lie sphere geometry, discrete surfaces theory, surface representations
离散微分几何、李球几何、离散曲面理论、曲面表示
  • 批准号:
    22KF0255
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
  • 批准号:
    2301994
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Differential Geometry and Minimal Surfaces
微分几何和最小曲面
  • 批准号:
    2305255
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Wall-crossing: from classical algebraic geometry to differential geometry, mirror symmetry and derived algebraic Geometry
穿墙:从经典代数几何到微分几何、镜面对称和派生代数几何
  • 批准号:
    EP/X032779/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Algebraic and Differential Geometry
代数和微分几何
  • 批准号:
    2883146
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Differential Equations in Complex Riemannian Geometry
复杂黎曼几何中的微分方程
  • 批准号:
    2203607
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Seeking universal principle for nonequilibrium thermodynamics based on differential geometry
基于微分几何寻求非平衡热力学普遍原理
  • 批准号:
    22H01141
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Differential and Integral Operators on Riemann Surfaces and the Geometry and Algebra of Sewing
黎曼曲面上的微分和积分算子以及缝纫几何和代数
  • 批准号:
    RGPIN-2021-03351
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了