Differential Equations in Complex Riemannian Geometry

复杂黎曼几何中的微分方程

基本信息

  • 批准号:
    2203607
  • 负责人:
  • 金额:
    $ 18.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The research project focuses on several open questions in complex geometry and geometric flows in relation to geometry and physics. The deep understanding of these problems will help make fundamental progress in the study of analytic and geometric singularities arising from differential equations in geometry and physics. The project also aims to bring in research and teaching innovation in mathematics from various disciplines and has an immediate beneficial effect on undergraduate and graduate students at Rutgers as well as in the regional mathematical community. The PI will continue to organize and participate in the integrated research/education programs and activities that will promote the education level of the nation. The PI will investigate canonical metrics of Einstein type on Kahler varieties with mild singularities. In particular, the PI will study the Riemannian geometric properties of such singular metrics and analytic moduli problems for Kahler-Einstein manifolds. The PI will continue to make progress in the analytic minimal model program with Ricci flow by studying both finite-time and long-time formation of singularities of the Kahler-Ricci flow on Kahler varieties. Such singularity formation should be understood through global and local metric uniformization equivalent to canonical geometric surgeries and birational transformations. The PI also aims to extend his work on the Nakai-Moishezon criterion for complex Hessian equations in both stable and unstable cases, building connections between conditions of algebraic positivity and nonlinear PDEs. The PI will employ theories and techniques from geometric L2-theory, nonlinear PDEs, Cheeger-Colding theory and Perelman's work on Ricci flow. The outcome of the research will develop new tools and give profound insights and understanding of topological, geometric and algebraic structures of complex spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目侧重于与几何和物理学相关的复杂几何和几何流中的几个开放性问题。对这些问题的深入理解将有助于几何和物理学中微分方程产生的分析和几何奇异性的研究取得根本性进展。该项目还旨在从各个学科引入数学研究和教学创新,并对罗格斯大学的本科生和研究生以及区域数学界产生直接的有益影响。PI将继续组织和参与将提高国家教育水平的综合研究/教育方案和活动。 PI将研究具有轻度奇点的Kahler簇上的爱因斯坦型正则度量。特别是,PI将研究这种奇异度量的黎曼几何性质和Kahler-Einstein流形的解析模问题。PI将继续在Ricci流的分析最小模型程序中取得进展,研究Kahler变量上Kahler-Ricci流奇点的有限时间和长时间形成。这种奇异性的形成应理解通过全球和当地的度量均匀化相当于典型的几何手术和双有理变换。PI还旨在扩展他在稳定和不稳定情况下复杂Hessian方程的Nakai-Moishezon准则方面的工作,建立代数正性条件和非线性偏微分方程之间的联系。PI将采用几何L2理论、非线性偏微分方程、Cheeger-Colding理论和Perelman关于Ricci流的工作的理论和技术。该研究成果将开发新的工具,并对复杂空间的拓扑、几何和代数结构给予深刻的见解和理解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kähler–Einstein metrics near an isolated log-canonical singularity
Local noncollapsing for complex Monge–Ampère equations
复杂 Monge-Ampère 方程的局部不塌缩
Diameter estimates for long-time solutions of the Kähler–Ricci flow
  • DOI:
    10.1007/s00039-022-00620-9
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Wangjian Jian;Jian Song
  • 通讯作者:
    Wangjian Jian;Jian Song
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian Song其他文献

Elevated pervaporative desulfurization performance of Pebax®-Ag+@MOFs hybrid membranes by integrating multiple transport mechanisms
通过集成多种传输机制提高 Pebax®-Ag @MOFs 杂化膜的渗透蒸发脱硫性能
  • DOI:
    10.1021/acs.iecr.9b03064
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Ye Zhang;Zhongyi Jiang;Jing Song;Jian Song;Fusheng Pan;Peng Zhang;Xingzhong Cao
  • 通讯作者:
    Xingzhong Cao
Bandwidth Efficiency Maximization for Single-Cell Massive Spatial Modulation MIMO: An Adaptive Power Allocation Perspective
单小区大规模空间调制 MIMO 的带宽效率最大化:自适应功率分配视角
  • DOI:
    10.1109/access.2017.2668420
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Longzhuang He;Jintao Wang;Jian Song;Lajos Hanzo
  • 通讯作者:
    Lajos Hanzo
Modification and application of Relap5 Mod3 code to several types of nonwater‐cooled advanced nuclear reactors
Relap5 Mod3代码在几种类型非水冷先进核反应堆上的修改及应用
  • DOI:
    10.1002/er.3949
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Limin Liu;Dalin Zhang;Jian Song;Chenglong Wang;Xinli Gao;Wenxi Tian;Suizheng Qiu;G.H. Su
  • 通讯作者:
    G.H. Su
(2+1) dimensional Rossby waves with complete Coriolis force and its solution by homotopy perturbation method
(2 1) 具有完全科里奥利力的维罗斯贝波及其同伦摄动法解
  • DOI:
    10.1016/j.camwa.2017.02.036
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruigang Zhang;Liangui Yang;Jian Song;Hongli Yang
  • 通讯作者:
    Hongli Yang
High performance Nb/TiNi nanocomposites produced by packaged accumulative roll bonding
通过封装累积辊压粘合生产高性能 Nb/TiNi 纳米复合材料
  • DOI:
    10.1016/j.compositesb.2020.108403
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daqiang Jiang;Jian Song;Hong Yang;Yinong Liu;Xiaohua Jiang;Yang Ren;Kaiyuan Yu;Lishan Cui
  • 通讯作者:
    Lishan Cui

Jian Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian Song', 18)}}的其他基金

Canonical Metrics, the Kahler-Ricci Flow, and Their Applica1ons
规范度量、Kahler-Ricci 流及其应用
  • 批准号:
    1711439
  • 财政年份:
    2017
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Canonical Metrics, Geometric Flows and Formation of Singularities
规范度量、几何流和奇点的形成
  • 批准号:
    1406124
  • 财政年份:
    2014
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
CAREER: Canonical metrics, complex Monge-Ampere equations and geometric flows
职业:规范度量、复杂的 Monge-Ampere 方程和几何流
  • 批准号:
    0847524
  • 财政年份:
    2009
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Nonlinear Geo metric Equations of Monge-Ampere Type and Canonical Metrics
Monge-Ampere型非线性几何方程与正则度量
  • 批准号:
    0808631
  • 财政年份:
    2007
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Nonlinear Geo metric Equations of Monge-Ampere Type and Canonical Metrics
Monge-Ampere型非线性几何方程与正则度量
  • 批准号:
    0604805
  • 财政年份:
    2006
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant

相似海外基金

Geometric Aspects of Complex Differential Equations
复微分方程的几何方面
  • 批准号:
    EP/W012251/1
  • 财政年份:
    2022
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Research Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
  • 批准号:
    2231783
  • 财政年份:
    2022
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Continuing Grant
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
  • 批准号:
    2203273
  • 财政年份:
    2022
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Continuing Grant
An efficient, accurate and robust solution technique for variable coefficient elliptic partial differential equations in complex geometries
复杂几何中变系数椭圆偏微分方程的高效、准确和稳健的求解技术
  • 批准号:
    2110886
  • 财政年份:
    2021
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    1954347
  • 财政年份:
    2020
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Problems in Complex Analysis, Partial Differential Equations, and Mathematical Physics
复分析、偏微分方程和数学物理问题
  • 批准号:
    1855947
  • 财政年份:
    2019
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
  • 批准号:
    1903147
  • 财政年份:
    2019
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Continuing Grant
International Workshop on Partial Differential Equations and Complex Analysis
偏微分方程与复分析国际研讨会
  • 批准号:
    1841778
  • 财政年份:
    2018
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Travel funds for the conference "Complex functions, operators, partial differential equations, and applications in mathematical physics."
“复杂函数、运算符、偏微分方程以及数学物理中的应用”会议的旅费。
  • 批准号:
    1700874
  • 财政年份:
    2017
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    1700003
  • 财政年份:
    2017
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了