On the Iterative Behavior of Open Maps
关于开放地图的迭代行为
基本信息
- 批准号:0405774
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-15 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Open maps between topological spaces have been studied extensivelyfor many years. For example, Stoilow showed in early 1900 thateach open and light map of the 2-sphere is a branched coveringmap. However, much less is known about the iterative behavior ofsuch maps. For example it is still not known if every branchedcovering map of the sphere has a fixed point in every properinvariant sub-continuum with connected complement. In contrast,using mostly analytic techniques, the dynamics of rational maps Rof the sphere are quite well understood. However, the analyticapproach is difficult in certain limit cases (i.e., if R haseither neutral periodic points or recurrent critical points). Theonly case where significant progress was made towards a detailedanalysis of the dynamics of all continuous functions is for mapsof the unit interval. We believe that significant new results arealso possible for open (and open-like) maps on other simple spaces(i.e., manifolds or dendrites) without an analytic or one-to-oneassumption. Some progress in this direction was made for minimal(not necessarily one-to-one) maps on manifolds and certaincompositions of open and monotone maps on the sphere.The long term behavior of a system is determined by a set ofequations and given initial conditions. The system can bedescribed by a function f, acting on a space X, with a giveninitial value x (the "state of the system"). The long termbehavior of the system can then be described by iteration: theinitial value x=x(0), the state of the system at time zero, leadsto the value x(1), the state at time one, which leads to x(2)etc. The limit behavior of the sequence x(0), x(1) describes thelong term behavior of the system. It is known that, even for verysimple systems, the long term behavior of the system may bechaotic. The complexity of the system is governed by thecomplexity of the space X and the function f. In this researchproject we propose to extend information about the long termbehavior of systems using more general spaces and a larger classof functions.
拓扑空间之间的开映射已被广泛研究多年。例如,Stoilow在1900年初表明,2球的每个开放和光照地图都是一个分支覆盖地图。然而,人们对这种映射的迭代行为知之甚少。例如,球的每一个分支覆盖映射是否在每一个具有连通补的性质不变子连续域中都有一个不动点仍然是未知的。相比之下,使用大多数分析技术,球体的有理映射的动力学被很好地理解。然而,在某些极限情况下(即,如果R有中性周期点或循环临界点),解析方法是困难的。在对所有连续函数的动力学进行详细分析方面取得重大进展的唯一情况是单位区间的映射。我们相信,对于其他简单空间(如:(流形或树突),没有分析或一对一的假设。在这个方向上取得了一些进展,包括流形上的最小映射(不一定是一对一的)和球面上的开放和单调映射的某些组合。系统的长期行为是由一组方程和给定的初始条件决定的。系统可以用作用于空间X的函数f来描述,函数f具有给定的初始值X(“系统状态”)。然后,系统的长期行为可以通过迭代来描述:初始值x=x(0),系统在时间0时的状态导致值x(1),时间1时的状态导致x(2)等。序列x(0), x(1)的极限行为描述了系统的长期行为。众所周知,即使对于非常简单的系统,系统的长期行为也可能是混沌的。系统的复杂性由空间X和函数f的复杂性决定。在这个研究项目中,我们建议使用更一般的空间和更大的函数类来扩展关于系统长期行为的信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lex Oversteegen其他文献
Applications of almost one-to-one maps
- DOI:
10.1016/j.topol.2004.03.009 - 发表时间:
2006-04-01 - 期刊:
- 影响因子:
- 作者:
Alexander Blokh;Lex Oversteegen;E.D. Tymchatyn - 通讯作者:
E.D. Tymchatyn
The Julia sets of quadratic Cremer polynomials
- DOI:
10.1016/j.topol.2006.02.001 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:
- 作者:
Alexander Blokh;Lex Oversteegen - 通讯作者:
Lex Oversteegen
Lex Oversteegen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lex Oversteegen', 18)}}的其他基金
A Topological Approach to Questions in Dynamical Systems
动力系统问题的拓扑方法
- 批准号:
1807558 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
A Broad Based Program to Produce Mathematics Professionals
培养数学专业人士的基础广泛的计划
- 批准号:
0353825 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
Spring Topology and Dynamical Systems Conference 2004
2004 年春季拓扑与动力系统会议
- 批准号:
0349862 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
On Planar Mappings with Invariant Continua
关于具有不变连续性的平面映射
- 批准号:
0072626 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: The Topological Structure of Planar Continua
数学科学:平面连续体的拓扑结构
- 批准号:
9704903 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Classification of Atriodic Tree-like Continua
数学科学:周期性树状连续体的分类
- 批准号:
8602400 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Spring Topology Conference 1987
数学科学:1987 年春季拓扑会议
- 批准号:
8613092 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
The NKI Rockland Sample II: An Open Resource of Multimodal Brain, Physiology & Behavior Data from a Community Lifespan Sample
NKI Rockland 样本 II:多模式大脑、生理学的开放资源
- 批准号:
10450054 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Elements: Open-source tools for block polymer phase behavior
Elements:用于嵌段聚合物相行为的开源工具
- 批准号:
2103627 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
The NKI Rockland Sample II: An Open Resource of Multimodal Brain, Physiology & Behavior Data from a Community Lifespan Sample
NKI Rockland 样本 II:多模式大脑、生理学的开放资源
- 批准号:
10623202 - 财政年份:2021
- 资助金额:
-- - 项目类别:
CAREER: Generalizable and Reliable Behavior Synthesis in Uncertain Open-World Environments
职业:不确定开放世界环境中的可推广且可靠的行为综合
- 批准号:
1942856 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Adhesive durability of joint repair materials by underwater fatigue test that reproduces the expansion and contraction behavior of open channels
通过水下疲劳试验来再现明渠的膨胀和收缩行为,从而实现接缝修复材料的粘合耐久性
- 批准号:
20K22603 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Public Open Space Design Based on Human Behavior and Perception in Cities with Severe Winter Climate
严冬气候城市基于人类行为和感知的公共开放空间设计
- 批准号:
19K15159 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: Behavior under Open List Proportional Representation Systems
EAGER:开放列表比例代表制下的行为
- 批准号:
1832771 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Scale development for measuring adherence behavior of patients undergoing open heart surgery
用于测量接受心脏直视手术的患者依从行为的量表开发
- 批准号:
15K15836 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Columbia University Science of Behavior Change Resource and Coordinating Center: Open Science Administrative Supplement
哥伦比亚大学行为改变科学资源和协调中心:开放科学行政补充
- 批准号:
9292851 - 财政年份:2015
- 资助金额:
-- - 项目类别:
The effect of information cues on the ballot on voter satisfaction and behavior in open-list elections
选票上的信息线索对公开选举中选民满意度和行为的影响
- 批准号:
271128342 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants