Shape Statistics and Data Mining
形状统计和数据挖掘
基本信息
- 批准号:0406431
- 负责人:
- 金额:$ 19.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-15 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is dealing with statistical methods for large and complex data setsinvolving shape aspects. One example for a method relevant to this projectis PRIM (Friedman and Fisher, 1999), a popular data mining algorithm witha wide range of possible applications. PRIM has been applied to serval real worldproblems and two modifications have recently been developed(Becker and Fahrmeir (2001) and LeBlanc et al. (2002)). Nevertheless,no theoretical foundation of the algorithm exists which might provide a deeperunderstanding of the algorithm. To provide such an analysis of PRIM and its modificationsis part of the proposed project. In fact, a preliminary analysis revealed a close connectionsto much better understood methods based on minimum volume sets. This revelationalso shows the connection to "shape statistics". In another subproject the investigatorwill develop a novel projection pursuit type method for dimension reduction which isaimed at subsequent classification or mode hunting. This task involves both algorithmicand theoretical challenges, and again "shape" aspects (modes, antimodes, etc.)come into play.In more general terms it can be said that there is an acknowledged lack of(theoretical) understanding of many statistical methods for large and complex datasets, and enhancing this knowledge is considered to be an important task of statistics(see Kettenring et al. 2003). This project is aimed at contributing tothis task both directly and indirectly: (a) directly by providing an analysis ofsome of the existing data mining procedures, and (b) indirectly by developingnovel methods for large and complex data sets including supportingstatistical theory.
这个项目是处理统计方法的大型和复杂的数据集涉及形状方面。一个例子的方法相关的这个项目是PRIM(弗里德曼和费舍尔,1999年),一个流行的数据挖掘算法与广泛的可能的应用。PRIM已被应用于一些真实的世界问题,最近开发了两个修改(Becker和Fahrmeir(2001)和LeBlanc等人(2002))。然而,没有理论基础的算法存在,这可能会提供一个更深入的理解算法。提供PRIM及其修改的分析是拟议项目的一部分。事实上,初步分析显示,基于最小体积集的方法与更好理解的方法有密切联系。这个启示也显示了与“形状统计”的联系。在另一个子项目中,本课题将开发一种新的投影寻踪型降维方法,用于后续的分类或模式搜索.这项任务涉及算法和理论的挑战,并再次“形状”方面(模式,反模式等)。更一般地说,可以说,人们承认缺乏对大型和复杂数据集的许多统计方法的(理论)理解,加强这方面的知识被认为是统计学的一项重要任务(见Kettenring等人,2003年)。该项目旨在直接和间接地为这一任务做出贡献:(a)直接通过提供对现有数据挖掘程序的分析,(B)间接通过为大型复杂数据集开发新方法,包括支持统计理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Polonik其他文献
Wolfgang Polonik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Polonik', 18)}}的其他基金
The Shape of Data: Using Topology and Geometry in Statistics
数据的形状:在统计学中使用拓扑和几何
- 批准号:
2015575 - 财政年份:2020
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
Shape constraint inference: Open problems and new directions
形状约束推断:开放问题和新方向
- 批准号:
1523379 - 财政年份:2015
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
RTG: Statistics in the 21st Century - Objects, Geometry and Computing
RTG:21 世纪的统计 - 对象、几何和计算
- 批准号:
1148643 - 财政年份:2012
- 资助金额:
$ 19.88万 - 项目类别:
Continuing Grant
Multivariate Nonparametric Methods Using Mass Concentration
使用质量浓度的多元非参数方法
- 批准号:
0103606 - 财政年份:2001
- 资助金额:
$ 19.88万 - 项目类别:
Continuing Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
- 批准号:
0079430 - 财政年份:2000
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
相似海外基金
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
- 批准号:
2340482 - 财政年份:2024
- 资助金额:
$ 19.88万 - 项目类别:
Continuing Grant
Conference: The 2024 Joint Research Conference on Statistics in Quality, Industry, and Technology (JRC 2024) - Data Science and Statistics for Industrial Innovation
会议:2024年质量、工业和技术统计联合研究会议(JRC 2024)——数据科学与统计促进产业创新
- 批准号:
2404998 - 财政年份:2024
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
Modules for Statistics Graduate Teaching Assistants Learning to Teach Equitably with Authentic Data
统计学研究生助教学习如何使用真实数据进行公平教学的模块
- 批准号:
2315435 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
Children's Oncology Group Statistics and Data Center
儿童肿瘤学组统计和数据中心
- 批准号:
10799432 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Monitoring of inequality in cervical cancer and elucidation of its factors - Utilization of official statistics and cancer registry data
监测宫颈癌的不平等并阐明其因素 - 利用官方统计数据和癌症登记数据
- 批准号:
23K19772 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
NeuroMAP Phase II - Data Management and Statistics Core
NeuroMAP 第二阶段 - 数据管理和统计核心
- 批准号:
10711138 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Modules for Statistics Graduate Teaching Assistants Learning to Teach Equitably with Authentic Data
统计学研究生助教学习如何使用真实数据进行公平教学的模块
- 批准号:
2315434 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
A comprehensive study for analyzing and eliminating health inequalities in Japan using national statistics and medical big data
利用国家统计数据和医疗大数据分析和消除日本健康不平等现象的综合研究
- 批准号:
23K16341 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists