Multivariate Nonparametric Methods Using Mass Concentration
使用质量浓度的多元非参数方法
基本信息
- 批准号:0103606
- 负责人:
- 金额:$ 17.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-15 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nonparametric statistical methods are used in practice so far mainly for low dimensional data. A major reason for this is the so-called ``curse of dimensionality'', meaning that the statistical performance of methods get worse with increasing dimension. On the other hand, the steep increase in complexity when passing from dimension one to higher dimensions might not be caught adequately by parametric models. Hence, there is a need for non- and semiparametic methods that on the one hand do not suffer too much from the curse of dimensionality, and on the other hand are computationally feasible. The goal of this project is to develop such types of nonparametric statistical methods. Central for this project is the observation that many important statistical problems can be formulated in terms of ``mass concentration'', thereby providing a unifying view to diverse problems with potential applications in various scientific fields. The intuitive idea of mass concentration becomes explicitly expressed in the statistical methods developed in this project. This makes the proposed methods transparent and intuitively accessible which supports interpretation of the outcomes.Included in the project is problem of ``investigating multivariate modality''. Different approaches will be considered. One approach is based on a local fitting procedure, and another is based on some concavity property of a certain concentration function. Another problem included in this project that admits a natural formulation in terms of mass concentration is ``measuring volatility or risk in financial time series'' which is a central problem of stochastic finance. Regions with high volatility can be interpreted as regions where the volatility function is highly concentrated. Investigating more than one explanatory variable simultaneously leads to a nontrivial multivariate problem. Surprisingly, these quite diverse problems can be treated by closely related methods. This underlines the usefulness of our methodology whose propagation is another inherent goal of this project.
到目前为止,非参数统计方法在实践中主要用于低维数据。造成这种情况的一个主要原因是所谓的“维度诅咒”,即方法的统计性能随着维度的增加而变差。另一方面,从一维到更高维时复杂性的急剧增加可能不能被参数模型充分捕捉到。因此,需要非参数和半参数方法,一方面不受维度诅咒的影响,另一方面在计算上是可行的。这个项目的目标是开发这样的非参数统计方法。该项目的核心是观察到,许多重要的统计问题可以用“质量集中”来表述,从而为在各种科学领域具有潜在应用的各种问题提供了统一的观点。质量集中的直观概念在这个项目中开发的统计方法中得到了明确的表达。这使得所提出的方法透明和直观,从而支持对结果的解释。该项目中包含了“调查多变量模式”的问题。将考虑不同的方法。一种方法是基于局部拟合法,另一种是基于某一浓度函数的凹性。本项目所包括的另一个问题是“衡量金融时间序列中的波动性或风险”,这是随机金融的一个中心问题。波动率高的地区可以解释为波动率函数高度集中的地区。同时调查多个解释变量会导致一个不平凡的多变量问题。令人惊讶的是,这些千差万别的问题可以用密切相关的方法来处理。这强调了我们的方法的实用性,其传播是该项目的另一个固有目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Polonik其他文献
Wolfgang Polonik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Polonik', 18)}}的其他基金
The Shape of Data: Using Topology and Geometry in Statistics
数据的形状:在统计学中使用拓扑和几何
- 批准号:
2015575 - 财政年份:2020
- 资助金额:
$ 17.37万 - 项目类别:
Standard Grant
Shape constraint inference: Open problems and new directions
形状约束推断:开放问题和新方向
- 批准号:
1523379 - 财政年份:2015
- 资助金额:
$ 17.37万 - 项目类别:
Standard Grant
RTG: Statistics in the 21st Century - Objects, Geometry and Computing
RTG:21 世纪的统计 - 对象、几何和计算
- 批准号:
1148643 - 财政年份:2012
- 资助金额:
$ 17.37万 - 项目类别:
Continuing Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
- 批准号:
0079430 - 财政年份:2000
- 资助金额:
$ 17.37万 - 项目类别:
Standard Grant
相似海外基金
Bayesian Nonparametric Methods for Aggregated and Multivariate Outputs
用于聚合和多元输出的贝叶斯非参数方法
- 批准号:
2283505 - 财政年份:2019
- 资助金额:
$ 17.37万 - 项目类别:
Studentship
Topics in multivariate nonparametric and robust methods
多元非参数和稳健方法的主题
- 批准号:
327110-2009 - 财政年份:2013
- 资助金额:
$ 17.37万 - 项目类别:
Discovery Grants Program - Individual
Topics in multivariate nonparametric and robust methods
多元非参数和稳健方法的主题
- 批准号:
327110-2009 - 财政年份:2012
- 资助金额:
$ 17.37万 - 项目类别:
Discovery Grants Program - Individual
Topics in multivariate nonparametric and robust methods
多元非参数和稳健方法的主题
- 批准号:
327110-2009 - 财政年份:2011
- 资助金额:
$ 17.37万 - 项目类别:
Discovery Grants Program - Individual
Topics in multivariate nonparametric and robust methods
多元非参数和稳健方法的主题
- 批准号:
327110-2009 - 财政年份:2010
- 资助金额:
$ 17.37万 - 项目类别:
Discovery Grants Program - Individual
Topics in multivariate nonparametric and robust methods
多元非参数和稳健方法的主题
- 批准号:
327110-2009 - 财政年份:2009
- 资助金额:
$ 17.37万 - 项目类别:
Discovery Grants Program - Individual
Multivariate robust nonparametric methods
多元稳健非参数方法
- 批准号:
327110-2006 - 财政年份:2008
- 资助金额:
$ 17.37万 - 项目类别:
Discovery Grants Program - Individual
Multivariate nonparametric methods and ensemble methods
多元非参数方法和集成方法
- 批准号:
227087-2004 - 财政年份:2008
- 资助金额:
$ 17.37万 - 项目类别:
Discovery Grants Program - Individual
Multivariate nonparametric methods and ensemble methods
多元非参数方法和集成方法
- 批准号:
227087-2004 - 财政年份:2007
- 资助金额:
$ 17.37万 - 项目类别:
Discovery Grants Program - Individual
Multivariate robust nonparametric methods
多元稳健非参数方法
- 批准号:
327110-2006 - 财政年份:2007
- 资助金额:
$ 17.37万 - 项目类别:
Discovery Grants Program - Individual