New Theoretical and Applied Methods in Optimal Control
最优控制新理论与应用方法
基本信息
- 批准号:0408542
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
New Theoretical and Applied Methods in Optimal ControlOptimal control is fundamental to all endeavors that apply dynamics and control: if any system is to be forced to do something, it can be forced to do so in an optimal way. Historically there has been no single, systematic procedure for the solution of non-linear optimal feedback control laws that can be applied to a given optimal control problem across a variety of boundary conditions. As different boundary or terminal conditions are applied to the system, the nature of the optimal feedback control laws can change drastically and with no apparent pattern. This is a fundamental difficulty, and implies that the optimal control law for a given dynamical system must be "re-solved" as the boundary conditions and targets for the system change. The research we are proposing directly addresses this limitation. Starting from the same basic foundations from which the Hamilton-Jacobi-Bellman equation is derived, we have developed a new approach to solving optimal feedback control problems that overcome some of these barriers to truly reconfigurable control. Using the classical theory of canonical transformations (corresponding to the solution flow of the Hamiltonian system derived from the necessary conditions for optimality) we are able to pose a formal solution to the optimal control problem with arbitrary boundary conditions placed on the dynamical system. These formal results have proven to be fruitful, as we have been able to develop an explicit solution procedure that finds an analytical form for the non-linear optimal feedback control law for a general class of problems. Furthermore, our approach can provide an explicit algorithm for reconfiguring optimal feedback controls to deal with changes in boundary conditions and terminal constraints, so long as the cost function and dynamics (i.e., the Hamiltonian function) remains the same.We will continue the development of our approach and explore the application of our applied methodology to larger classes of control problems, including those with control constraints, state constraints, under-actuated controls, and non-analytic cost functions. The main outcomes of this research will be a new theoretical formalism for solving and analyzing optimal control problems and a computational tool that can generate optimal feedback control laws for a general class of systems. Both our new formalism and this tool will be of great use in educational and research settings, and will be made available to students taking graduate courses in optimal control at Michigan.
最优控制中新的理论和应用方法最优控制是所有应用动力学和控制的努力的基础:如果任何系统被强迫做某事,它可以被强迫以最优的方式这样做。在历史上,没有一个单一的、系统的方法来求解非线性最优反馈控制律,它可以应用于给定的各种边界条件下的最优控制问题。当系统应用不同的边界或终端条件时,最优反馈控制律的性质可能会发生很大的变化,并且没有明显的模式。这是一个基本的困难,意味着给定动力系统的最优控制律必须随着系统边界条件和目标的变化而“重新求解”。我们提出的研究直接解决了这一限制。从导出Hamilton-Jacobi-Bellman方程的相同基本基础出发,我们发展了一种新的方法来解决最优反馈控制问题,克服了其中一些障碍,实现了真正的可重构控制。利用经典的正则变换理论(对应于由最优性必要条件导出的哈密顿系统的解流),我们能够给出对动力系统施加任意边界条件的最优控制问题的形式解。这些形式上的结果被证明是卓有成效的,因为我们已经能够开发出一种显式求解程序,为一般类型的问题找到非线性最优反馈控制律的解析形式。此外,只要代价函数和动态(即哈密顿函数)保持不变,我们的方法可以提供一个显式算法来重新配置最优反馈控制,以处理边界条件和终端约束的变化。我们将继续发展我们的方法,并探索将我们的应用方法应用于更大类的控制问题,包括具有控制约束、状态约束、欠驱动控制和非解析代价函数的控制问题。这项研究的主要成果将是解决和分析最优控制问题的新的理论形式,以及为一般系统生成最优反馈控制律的计算工具。我们的新形式主义和这个工具都将在教育和研究环境中非常有用,并将提供给在密歇根大学学习最优控制研究生课程的学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Scheeres其他文献
Constrained evolution of Hamiltonian phase space distributions in the presence of natural, non-conservative forces
- DOI:
10.1007/s10569-023-10172-1 - 发表时间:
2023-12-16 - 期刊:
- 影响因子:1.400
- 作者:
Oliver Boodram;Daniel Scheeres - 通讯作者:
Daniel Scheeres
Dynamics around the Earth–Moon triangular points in the Hill restricted 4-body problem
- DOI:
10.1007/s10569-024-10203-5 - 发表时间:
2024-07-09 - 期刊:
- 影响因子:1.400
- 作者:
Luke T. Peterson;Gavin Brown;Àngel Jorba;Daniel Scheeres - 通讯作者:
Daniel Scheeres
Daniel Scheeres的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Grazing management impacts to plant communities through an applied and theoretical lens
通过应用和理论视角放牧管理对植物群落的影响
- 批准号:
548066-2020 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Conference Support for the 19th U.S. National Congress on Theoretical and Applied Mechanics; Austin, Texas; 19-24 June 2022
第十九届美国全国理论与应用力学大会的会议支持;
- 批准号:
2222038 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Core Support of the Board on Mathematical Sciences and Analytics and the Committee on Applied and Theoretical Statistics
数学科学与分析委员会和应用与理论统计委员会的核心支持
- 批准号:
2133303 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Support for US Early Career Researchers to Present at 25th International Congress of Theoretical & Applied Mechanics (ICTAM); Virtual; August 22-27, 2021
支持美国早期职业研究人员出席第 25 届国际理论大会
- 批准号:
2135969 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Grazing management impacts to plant communities through an applied and theoretical lens
通过应用和理论视角放牧管理对植物群落的影响
- 批准号:
548066-2020 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Breather and Soliton Gases for the Focusing Nonlinear Schrodinger Equation: Theoretical and Applied Aspects
用于聚焦非线性薛定谔方程的呼吸气体和孤子气体:理论和应用方面
- 批准号:
2009647 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Grazing management impacts to plant communities through an applied and theoretical lens
通过应用和理论视角放牧管理对植物群落的影响
- 批准号:
548066-2020 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Theoretical and Applied Research on Spatial Design Strategies for Optimal Transport
最优交通空间设计策略的理论与应用研究
- 批准号:
19H02374 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Establishing the contemporary sociology of time: Conceptions of social time elucidated via integration of axiomatic method and theoretical, historical, and applied studies
建立当代时间社会学:通过公理方法与理论、历史和应用研究的结合阐明社会时间的概念
- 批准号:
19K02145 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Travel Support for International Union of Theoretical and Applied Mechanics (IUTAM) Symposium on Shape Memory Alloys; Austin, Texas; April 28-May 2, 2019
国际理论与应用力学联合会 (IUTAM) 形状记忆合金研讨会的差旅支持;
- 批准号:
1927658 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Standard Grant