RUI: Mathematical Analysis of Voting and Representation in Multimember Electoral Districts
RUI:多成员选区投票和代表权的数学分析
基本信息
- 批准号:0408676
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator of this project will conduct mathematical analysis of voting and representation, integrating his research with educational activities in which he will direct undergraduate student research projects and develop a course on mathematical models in politics. The research component applies theoretical models and analytical results to describe the comparative fairness of methods of voting and composing representative bodies. The P.I. examines voting systems in multimember electoral districts, with emphasis on the method of cumulative voting, searching for predictive equilibrium conditions and analyzing their potential to enable a minority population to achieve a fair share of a representative body. The project requires considerable development of the theory of spatial modeling of at-large elections, in addition to application of measures of inequality and of optimization methods to minimize misrepresentation. The P.I.'s theory will describe and analyze voter tendencies, distributions of voters' policy ideals, and candidate behaviors in multimember electoral districts. In collaboration with political science colleagues, the P.I. will prepare for subsequent work analyzing data from elections and experiments so as to address the implications of the theory on the empirical data and use the empirical results to inform the theoretical models. Additionally, the P.I. will guide undergraduates on research projects interrelated with his own work, and he will develop a course, Mathematics and Fairness: Applications to Political and Economic Systems, in which students from mathematics, political science, and economics will examine formal theory and models of political phenomena with respect to measures of fairness and inequity.This project builds on the body of knowledge about the theory of voting and representation. The P.I.'s work will help to quantify fairness of election methods to populations and to groups and individuals therein. Particular attention is devoted to the method of cumulative voting, comparing its potential against other election methods to make fair representation possible, especially to minority populations, who are vulnerable to denial of representation under certain voting methods. The research will provide some mathematical basis for public discourse about the relative fairness of multimember district election methods. This mathematical basis also can serve policy makers and judicial officials who consider election methodology in resolving disputes, such as alleged violations of the Voting Rights Act. Numerous students associated with this project will benefit from research and course experiences that should inspire and help prepare them for graduate study and careers in the mathematical and social sciences.
这个项目的首席研究员将对投票和代表进行数学分析,将他的研究与教育活动结合起来,在这些活动中,他将指导本科生的研究项目,并开发一门关于政治数学模型的课程。研究部分应用理论模型和分析结果来描述投票和组成代表机构的方法的相对公平性。P.I.审查多个选区的投票制度,重点是累积投票的方法,寻找可预测的均衡条件,并分析它们的潜力,使少数族裔人口能够在代表机构中获得公平份额。除了应用不平等的衡量标准和尽量减少失实陈述的最优化方法外,该项目还需要大力发展普遍选举的空间建模理论。P.I.S理论将描述和分析选民倾向、选民政策理想的分布以及多人选区中的候选人行为。在与政治学同事的合作下,P.I.将准备随后的工作,分析选举和实验的数据,以解决该理论对经验数据的影响,并使用经验结果为理论模型提供依据。此外,P.I.将指导本科生开展与他自己的工作相关的研究项目,他将开发一门课程,数学与公平:政治和经济系统的应用,在这门课程中,来自数学、政治学和经济学的学生将研究关于公平和不平等衡量标准的政治现象的形式理论和模型。这个项目建立在关于投票和代表理论的知识基础上。P.I.S的工作将有助于量化选举方法对民众、群体和个人的公平性。特别关注累积投票法,将其与其他选举方法进行比较,以实现公平代表,特别是少数群体,因为在某些投票方法下,少数群体容易被剥夺代表权。这项研究将为公众讨论多人地区选举方式的相对公平性提供一定的数学基础。这一数学基础还可以为考虑选举方法的政策制定者和司法官员提供服务,以解决争端,如涉嫌违反《选举权法》的行为。与该项目相关的许多学生将从研究和课程经验中受益,这些研究和课程经验应该会激励和帮助他们为数学和社会科学的研究生学习和职业生涯做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duane Cooper其他文献
A comparison of cumulative voting and generalized plurality voting
- DOI:
10.1007/s11127-010-9707-5 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:2.200
- 作者:
Duane Cooper;Arthur Zillante - 通讯作者:
Arthur Zillante
Duane Cooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duane Cooper', 18)}}的其他基金
PRIMES: Researching and Teaching Mathematics of Fairness and Equity
PRIMES:公平与公正数学的研究和教学
- 批准号:
2332232 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
RUI: Mathematical Analysis of Several Models in Nonlinear Optics
RUI:非线性光学中几种模型的数学分析
- 批准号:
1715991 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: (RUI) Analysis of Optimal and Suboptimal Controls for Mathematical Models Arising in Novel Cancer Therapies
合作研究:(RUI)新型癌症疗法中出现的数学模型的最佳和次优控制分析
- 批准号:
0707404 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Semiparametric Regression Analysis
数学科学:RUI:半参数回归分析
- 批准号:
9403582 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Applications of Wavelet Analysis to Neural Networks
数学科学:RUI:小波分析在神经网络中的应用
- 批准号:
9404513 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Gelfand Pairs in Nilpotent Analysis
数学科学:RUI:幂幂分析中的 Gelfand 对
- 批准号:
9201218 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: RUI: Problems in Operator Theory and Matrix Analysis
数学科学:RUI:算子理论和矩阵分析中的问题
- 批准号:
9123841 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: RUI Uniqueness of Multiple Trigonometric Series and Symmetric Analysis
数学科学:RUI 多重三角级数和对称分析的唯一性
- 批准号:
9204325 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Set Convergence, Convex Analysis, and Optimization
数学科学:RUI:集合收敛、凸分析和优化
- 批准号:
9001096 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Partition Study for Successive Difference Analysis
数学科学:RUI:连续差分分析的划分研究
- 批准号:
8706072 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Standard Grant
RUI: Mathematical Sciences: The Analysis and the Design of Reflective Coatings
RUI:数学科学:反射涂层的分析与设计
- 批准号:
8602006 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Continuing Grant