Collaborative Research: (RUI) Analysis of Optimal and Suboptimal Controls for Mathematical Models Arising in Novel Cancer Therapies

合作研究:(RUI)新型癌症疗法中出现的数学模型的最佳和次优控制分析

基本信息

项目摘要

In a continuation of ongoing research, geometric methods in modern optimal control theory will be applied and developed as needed to analyze emerging mathematical models for novel cancer treatments with a focus on anti-angiogenic treatments and immunotherapy. Tools that go beyond an application of necessary conditions for optimality will be utilized aiming at a full synthesis of optimal controls to gain qualitative insights into the structure of optimal protocols for these novel treatments. Based on the knowledge of optimal solutions, a quantitative assessment of simpler and potentially more practical suboptimal protocols will be given. Combinations of these novel treatment approaches with conventional ones, like chemotherapy, will also be addressed in the hope of harnessing synergistic effects. Here challenges arise both in the modeling and analysis and will need to be resolved. In this context pharmacokinetics and pharmacodynamics of the drugs become an important aspect and generally models will be made more realistic by including these features. Mathematical complexity and biomedical relevance give double merit to this research: it enriches the understanding of important biomedical problems while it at the same time contributes to optimal control theory by developing and employing new techniques aimed at significant applications. A major limiting factor in traditional cancer treatments like chemotherapy is drug resistance. Consequently there exist strong efforts in cancer research to find treatments that would not be prone to drug resistance. Two prominent new directions that are actively being pursued nowadays, both in experimental stages and clinical trials, are anti-angiogenic treatments and immunotherapy. Because of the great complexity of the underlying medical problem, in clinical trials the scheduling of drugs is typically pursued in scientifically guided exhaustive trial-and-error approaches. But more complex protocols are relatively difficult, if not impossible, or at least very expensive to test in a laboratory setting, particularly if more than one drug is involved. In this project mathematical models for these newly emerging therapies will be analyzed with the tools of modern optimal control to shed some light into the structure of theoretically optimal protocols. While these may not yet be medically realizable with current technologies, this analysis provides theoretical benchmarks to which realizable protocols can be compared and thus aids the design of more effective suboptimal therapy protocols. This is of particular importance for novel therapies for which no specific guidelines have been established yet and even more so in combination with traditional approaches like radiotherapy or chemotherapy which are being pursued in an attempt to harness synergistic effects. Due to its applied and interdisciplinary character, the project contains a substantial educational component of interest to students from various fields including Mathematics, Biology and Engineering. Existing efforts to attract women and minorities to the project will be continued.
在持续进行的研究中,现代最优控制理论中的几何方法将根据需要应用和发展,以分析新型癌症治疗的新兴数学模型,重点是抗血管生成治疗和免疫治疗。将利用超越最优性必要条件应用的工具,旨在全面综合最优控制,以获得对这些新治疗的最佳方案结构的定性见解。基于最优解的知识,将给出更简单和可能更实用的次优协议的定量评估。这些新治疗方法与传统治疗方法(如化疗)的结合也将得到解决,以期利用协同效应。在建模和分析中都出现了挑战,需要加以解决。在这种情况下,药物的药代动力学和药效学成为一个重要的方面,通常模型将使更现实的包括这些特征。数学复杂性和生物医学相关性给这项研究带来了双重价值:它丰富了对重要生物医学问题的理解,同时通过开发和采用旨在重要应用的新技术,为最优控制理论做出了贡献。化疗等传统癌症治疗的一个主要限制因素是耐药性。因此,在癌症研究方面存在着巨大的努力,以找到不容易产生耐药性的治疗方法。目前,无论是在实验阶段还是临床试验阶段,人们都在积极追求两个突出的新方向:抗血管生成治疗和免疫治疗。由于潜在的医学问题非常复杂,在临床试验中,药物的安排通常采用科学指导的详尽的试错方法。但是,更复杂的方案相对来说比较困难,如果不是不可能的话,或者至少在实验室环境中进行测试非常昂贵,特别是在涉及多种药物的情况下。在这个项目中,这些新出现的治疗方法的数学模型将用现代最优控制的工具进行分析,以阐明理论上最优方案的结构。虽然目前的技术可能还无法在医学上实现这些,但本分析提供了理论基准,可以比较可实现的方案,从而有助于设计更有效的次优治疗方案。这对于尚未制定具体指南的新疗法尤其重要,对于与放疗或化疗等传统方法相结合的疗法更是如此,这些方法正在努力利用协同效应。由于其应用和跨学科的特点,该项目包含了来自数学、生物和工程等各个领域的学生感兴趣的大量教育组成部分。目前吸引妇女和少数民族参加项目的努力将继续进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Urszula Ledzewicz其他文献

Optimal Control for a Mathematical Model of Glioma Treatment with Oncolytic Therapy and TNF- $$\alpha $$ Inhibitors
The extremum principle for some types of distributed parameter control systems
某些类型的分布式参数控制系统的极值原理
  • DOI:
    10.1080/00036819308840146
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Urszula Ledzewicz
  • 通讯作者:
    Urszula Ledzewicz
Invited Speakers
特邀演讲嘉宾
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sérgio Dias;Antonio Fasano;Alberto Gandolfi;John King;Urszula Ledzewicz;José Carlos Machado;Alberto d’Onofrio;Luigi Preziosi;Vito Quaranta;Anne M. Robertson;Cláudia Lobato da Silva;em att.utl.p;A. Sequeira;Cemat Ist;A. Gambaruto;J. Janela;João Silva Soares
  • 通讯作者:
    João Silva Soares
Introduction to the special collection in honor of Avner Friedman
  • DOI:
    10.1007/s00285-022-01864-7
  • 发表时间:
    2023-01-25
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Hans Othmer;Yuan Lou;Philip Maini;Urszula Ledzewicz
  • 通讯作者:
    Urszula Ledzewicz

Urszula Ledzewicz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Urszula Ledzewicz', 18)}}的其他基金

US-Poland International Workshop: Micro and Macro Systems in the Life Sciences, Polish Academy of Sciences, Bedlewo, Poland, June 8-13, 2015
美国-波兰国际研讨会:生命科学中的微观和宏观系统,波兰科学院,波兰贝德勒沃,2015 年 6 月 8-13 日
  • 批准号:
    1456767
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: Regular Synthesis for Multi-input Optimal Control Problems with Applications to Biomedicine
RUI:协作研究:多输入最优控制问题的常规综合及其在生物医学中的应用
  • 批准号:
    1311733
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
US-South Africa Workshop: Mathematical Methods in Systems Biology and Population Dynamics, AIMS, Cape Town, South Africa
美国-南非研讨会:系统生物学和种群动态中的数学方法,AIMS,南非开普敦
  • 批准号:
    1135667
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: Optimal Control of Multi-Input Mathematical Models for Tumor Dynamics under Combination Therapies
RUI:合作研究:联合治疗下肿瘤动力学多输入数学模型的优化控制
  • 批准号:
    1008221
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
US-Israel Workshop: Mathematical Methods in Systems Biology, Tel Aviv, Israel, January 4-7, 2010
美国-以色列研讨会:系统生物学中的数学方法,以色列特拉维夫,2010 年 1 月 4-7 日
  • 批准号:
    0929596
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: Optimal Control of Mathematical Models for Cancer Treatments
RUI:合作研究:癌症治疗数学模型的优化控制
  • 批准号:
    0405827
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Analysis of Optimal Controls for Biomedical Models of Cancer and HIV
癌症和艾滋病毒生物医学模型的最佳控制分析
  • 批准号:
    0205093
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Synthesis in Applications of Optimal Control
RUI:最优控制应用综合
  • 批准号:
    9971747
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Abnormal Minimizers and Discontinuous Value Functions in Optimal Control
数学科学:最优控制中的异常极小化器和不连续值函数
  • 批准号:
    9622967
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Abnormality in Optimization and Optimal Control Problems
数学科学:最优化和最优控制问题中的异常
  • 批准号:
    9109324
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346565
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346564
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2426728
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Glacier resilience during the Holocene and late Pleistocene in northern California
合作研究:RUI:北加州全新世和晚更新世期间的冰川恢复力
  • 批准号:
    2303409
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: Assessing the causes of the pyrosome invasion and persistence in the California Current Ecosystem
RUI:合作研究:评估加州当前生态系统中火体入侵和持续存在的原因
  • 批准号:
    2329561
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Glacier resilience during the Holocene and late Pleistocene in northern California
合作研究:RUI:北加州全新世和晚更新世期间的冰川恢复力
  • 批准号:
    2303408
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346566
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334777
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334775
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了