Real-Time and Retrospective Analyses of Volcanic Earthquakes

火山地震的实时和回顾性分析

基本信息

  • 批准号:
    0409291
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

Real-Time and Retrospective Analyses of Volcanic EarthquakesClifford H. Thurber, University of Wisconsin-MadisonEAR- 040929 This project involves a collaboration between University of Wisconsin-Madison researchers and U.S. Geological Survey scientists at the Alaska Volcano Observatory (AVO) and in the Volcano Disaster Assistance Program (VDAP) on retrospective and real-time analysis of seismic data from a number of volcanoes in Alaska and worldwide. The main scientific goals are improvement in understanding the nature of the background and eruption-related seismicity at these active volcanoes, the development of new or improved models of their internal structure, and the development of an improved eruption warning and monitoring methods. There are four main types of analysis tools that being applied in the project: (1) waveform alignment methods, (2) event clustering and auto-picking, (3) double-difference location and tomography, and (4) real-time event location processing. Tools (1) and (3) are well-developed methods, whereas the development of (2) and (4) will require additional work as part of this project. AVO is currently responsible for the seismic monitoring of 25 volcanoes. With an eruption on average every 1 to 1.5 years and thousands of earthquakes to analyze annually, the opportunities for valuable seismic research are enormous. Four targets have been identified for analysis in this project: the Katmai Group, Shishaldin, Mount Spurr, and Makushin. Each of these targets is seismically active and has an adequate number of seismic stations to allow detailed relocation work, and in some cases tomography as well. During the last 8 years, VDAP has been deeply involved in several major volcanic crises, including Guagua Pichincha, Tungurahua, and Cotopaxi (Ecuador), Popocatepetl and Colima (Mexico), Rabaul and Pago (New Guinea), Soufriere Hills (Montserrat), Cerro Negro (Nicaragua), and Anatahan (Commonwealth of the Northern Marianas Islands). Because VDAP operates extensively in 3rd world countries and predominantly during crises, seismic networks must be installed or expanded hurriedly, and generally consist of no more than four to seven 1-Hz vertical sensors and often one 3-component station. Considerable time is generally lost during the initial week or so trying to devise reasonable seismic velocity models for the volcanoes owing to absence of previous work on the volcano's structure. Events are located using P and S phase first motions picked by human analysts. Owing to the small networks, simple first arrival picking, and probable velocity model errors, location errors are probably several kilometers for all axes. Automating a location scheme and integrating simple (1D) modeling to produce a velocity model quickly would save considerable valuable time during the critical onset of a crisis, producing locations with about an order of magnitude greater precision in the process. Most VDAP and Alaskan volcanoes are monitored by ~6 short period seismic stations. Earthquakes are located by analysts' picks, and location errors are often 1-2 km. Thus VDAP and AVO share difficulties in locating earthquakes, especially during crisis times when the analysts cannot keep up with seismicity rates. We plan to test our system at AVO, which uses the same Earthworm real-time processing system as VDAP, to determine its effectiveness in a larger-scale monitoring environment. The proposed work will build many years of experience by UW-Madison researchers on the investigation of the seismicity and structure of active volcanoes. Accurate earthquake locations are essential for characterizing magmatic pathways, identifying magma migration, and for obtaining meaningful results in analyses (such as spatial b-value studies) that rely on locations. An enhanced real-time location system would contribute to improved eruption warning capability directly by providing high-quality locations rapidly and indirectly by reducing the network operator's work load, allowing for more time to evaluate the seismicity patterns and their changes with time. Monitoring the spatio-temporal development of earthquake families will help us understand a volcano's magma conduit system and help identify when a volcano may shifting from a relatively steady-state system to a more dangerous condition.
对火山地震的实时和追溯分析威斯康星大学麦迪逊分校的Clifford H.瑟伯EAR-040929该项目涉及威斯康星大学麦迪逊分校的研究人员与阿拉斯加火山天文台和火山灾害援助计划的美国地质调查局科学家之间的合作,对阿拉斯加和世界各地多座火山的地震数据进行回顾和实时分析。主要的科学目标是改进对这些活火山的背景和与喷发有关的地震活动的性质的了解,开发新的或改进的内部结构模型,以及开发改进的喷发预警和监测方法。该项目主要应用了四种分析工具:(1)波形对准方法,(2)事件聚类和自动拾取,(3)双差定位和层析成像,(4)实时事件定位处理。工具(1)和(3)是开发得很好的方法,而(2)和(4)的开发将需要额外的工作作为该项目的一部分。AVO目前负责对25座火山进行地震监测。由于平均每1到1.5年爆发一次,每年要分析数千次地震,有价值的地震研究机会是巨大的。该项目确定了四个目标进行分析:Katmai集团、Shishaldin、马普尔山和Makushin。这些目标中的每一个都是地震活跃的,并有足够数量的地震台来进行详细的重新定位工作,在某些情况下还可以进行层析成像。在过去的8年中,VDAP深度卷入了几个重大火山危机,包括瓜瓜皮钦查、通古拉瓦和科托帕西(厄瓜多尔)、波波卡佩特尔和科利马(墨西哥)、拉博尔和帕戈(新几内亚)、苏弗里尔山(蒙特塞拉特)、塞罗尼格罗(尼加拉瓜)和阿纳塔罕(北马里亚纳群岛联邦)。由于VDAP在第三世界国家广泛运作,而且主要是在危机期间,地震台网必须匆忙安装或扩建,通常由不超过4至7个1-HZ垂直传感器和通常一个3分量台站组成。由于之前没有对火山结构进行研究,在最初一周左右的时间里,试图为火山设计合理的地震速度模型通常会浪费相当多的时间。使用人类分析员挑选的P和S阶段第一运动来确定事件的位置。由于网络较小,初至拾取简单,可能存在速度模型误差,所有轴线的定位误差可能在几公里以内。自动化选址方案并集成简单(1D)建模以快速生成速度模型将在危机爆发的关键阶段节省大量宝贵的时间,从而在此过程中以大约高一个数量级的精度生成位置。大多数VDAP和阿拉斯加火山是由~6个短周期地震台站监测的。地震是由分析师挑选的,定位误差通常为1-2公里。因此,VDAP和AVO在定位地震方面有共同的困难,特别是在分析人员无法跟上地震活动率的危机时期。我们计划在AVO测试我们的系统,AVO使用与VDAP相同的蚯蚓实时处理系统,以确定其在更大范围的监控环境中的有效性。这项拟议的工作将积累威斯康星大学麦迪逊分校研究人员在调查活火山地震活动和结构方面的多年经验。准确的地震位置对于描述岩浆路径、确定岩浆迁移以及在依赖于位置的分析(例如空间b值研究)中获得有意义的结果至关重要。增强的实时定位系统将通过快速和间接地提供高质量的位置,从而减少网络运营商的工作量,使更多的时间能够评估地震活动模式及其随时间的变化,从而直接有助于提高喷发预警能力。监测地震家族的时空发展将有助于我们了解火山的岩浆管道系统,并有助于识别火山何时可能从相对稳定的系统转变为更危险的条件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clifford Thurber其他文献

Clifford Thurber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clifford Thurber', 18)}}的其他基金

Applications of double-difference seismic attenuation tomography
双差地震衰减层析成像的应用
  • 批准号:
    2042919
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Architecture of the Subduction to Strike-Slip Transition in New Zealand
新西兰俯冲到走滑过渡的结构
  • 批准号:
    1756075
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Double-difference attenuation tomography method and pilot applications
双差衰减层析成像方法及试点应用
  • 批准号:
    1724685
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Rapid deployment of seismic instruments around Wellington, NZ, following the November 13, 2016, magnitude 7.8 Kaikoura earthquake
2016 年 11 月 13 日凯库拉 7.8 级地震后,在新西兰惠灵顿周围快速部署地震仪器
  • 批准号:
    1717119
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetotelluric and Seismic Investigations of the Distribution of Magmatic and Hydrous Fluids Beneath Yellowstone
合作研究:黄石地下岩浆和含水流体分布的大地电磁和地震调查
  • 批准号:
    1460061
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetotelluric and seismic investigation of arc melt generation, delivery, and storage beneath Okmok volcano
合作研究:奥克莫克火山下方电弧熔体产生、输送和储存的大地电磁和地震调查
  • 批准号:
    1456749
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Simultaneous Imaging of the Megathrust and Volcanic Systems in the Aleutian Islands Using Hybrid Mini Seismic Arrays
合作研究:使用混合微型地震阵列对阿留申群岛的巨型逆冲断层和火山系统进行同步成像
  • 批准号:
    1358619
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Assessing the causes of slab seismicity through dehydration, temperature and strain: A global approach
通过脱水、温度和应变评估板片地震活动的原因:全球方法
  • 批准号:
    1246955
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Relative velocity changes using ambient seismic noise at Okmok and Redoubt volcanoes, Alaska
使用阿拉斯加奥克莫克火山和堡垒火山周围地震噪声的相对速度变化
  • 批准号:
    1246975
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Observations of a newly discovered fault: Tomography, locations and source mechanisms for aftershocks of the M7.1 Darfield, New Zealand earthquake
对新发现断层的观测:新西兰达菲尔德 M7.1 地震余震的断层扫描、位置和震源机制
  • 批准号:
    1141983
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
  • 批准号:
    82360504
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
  • 批准号:
    82305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
  • 批准号:
    62171167
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
  • 批准号:
    31971706
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
Time-of-Flight深度相机多径干扰问题的研究
  • 批准号:
    61901435
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
  • 批准号:
    71671098
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
  • 批准号:
    11504059
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: Scientific Assessment of the McMurdo Dry Valleys Ecosystem: Environmental Stewardship in a Time of Dynamic Change
会议:麦克默多干谷生态系统的科学评估:动态变化时期的环境管理
  • 批准号:
    2409327
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
  • 批准号:
    2305609
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
  • 批准号:
    2305325
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了