PDE Techniques in Wavelet Based Image Processing
小波图像处理中的偏微分方程技术
基本信息
- 批准号:0410062
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research is to develop mathematical principlesand new methodologies for problems in and applications of digitalimage processing, and study their associated mathematical foundations.The emphasis is on combining partial differential equation (PDE)techniques with multi-resolution wavelet representations.In particular, we focus on two different image processing applications:wavelet inpainting (filling in missing or damaged wavelet coefficients),and PDE image compression. To achieve the tasks, we will integrate severalhigh level mathematical tools including geometrical PDE's,multi-resolution harmonic analysis and variational frameworkstogether with some state-of-the-art engineering methods in imagecoding, such as group testing wavelet (GTW) algorithms for imagecompression. The key is to exploit the power of multi-resolutionproperties of wavelets while at the same time use PDE techniques tosystematically and explicitly control the geometrical informationin the image so that salient features, such as edges and corners,can be recovered in the reconstructions. Efficient computation algorithmswill be designed and analyzed.Image compression and inpainting are two typical tasks of imageprocessing. Due to the large number of pixels of digital images,most of them have to be stored in compressed format. The currentinternational compression standard (JPEG2000), which is largelybased on wavelet representation, is one of the most popular schemes.Image compression has been used everywhere in our daily life, examplesinclude images transmitted on the Internet, wireless communications,medical images (such as MRI), satellite images. Efficient compressionmethods are highly desirable and the universal goal is to represent themost salient features (typically geometrical structures) using minimalpossible resources. This is one of the objectives of this project.Image inpainting refers to automatic procedures to fillin incomplete, missing or damaged image information. Such lossis often unavoidable in many applications such as wirelesstransmission, intelligence, homeland security (airports' screening),robotic path finding in unknown environment, three-dimensionalobject reconstruction from two-dimensional medical images. Becausemany digital images are stored in wavelet formats, and damages to suchformatted images correspond to loss of wavelet coefficients,wavelet inpainting demands special attention. Again, a key objectivein filling in the missing information is to restore missinggeometrical properties. We will investigate new models and methods forwavelet inpainting and related mathematical theories.
本研究的目的是为数字图像处理中的问题和应用发展数学原理和新方法,并研究它们的数学基础,重点是将偏微分方程(PDE)技术与多分辨率小波表示相结合,特别是,我们关注两种不同的图像处理应用:小波修复(填充丢失或损坏的小波系数)和PDE图像压缩。为了实现这些任务,我们将把一些高级数学工具,包括几何偏微分方程,多分辨率谐波分析和变分框架与一些最先进的工程方法,如图像压缩的分组测试小波(GTW)算法结合在一起。其关键是利用小波的多分辨率特性,同时使用PDE技术来系统地和明确地控制图像中的几何信息,以便在重建中恢复显著特征,如边缘和角点。图像压缩和图像修复是图像处理的两个典型任务。由于数字图像的像素数很大,大多数图像都必须以压缩格式存储。目前国际上流行的图像压缩标准(JPEG2000)是基于小波变换的图像压缩标准之一,图像压缩在我们的日常生活中已经被广泛应用,例如互联网上传输的图像、无线通信、医学图像(如MRI)、卫星图像等。高效的压缩方法是非常可取的,通用的目标是使用尽可能少的资源来表示最显著的特征(通常是几何结构)。图像修复是指对图像中不完整、缺失或损坏的信息进行自动填充的过程。在无线传输、情报、国土安全(机场安检)、机器人在未知环境中的路径搜索、二维医学图像的三维重建等应用中,这种损失是不可避免的。由于许多数字图像都是以小波格式存储的,而这种格式的图像的损坏对应于小波系数的丢失,因此小波修复需要特别关注。 同样,填充缺失信息的一个关键目标是恢复缺失的几何属性。我们将研究新的小波修复模型和方法以及相关的数学理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haomin Zhou其他文献
Method of evolving junctions: A new approach to optimal path-planning in 2D environments with moving obstacles
演化路口的方法:具有移动障碍物的二维环境中最优路径规划的新方法
- DOI:
10.1177/0278364917707252 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Wuchen Li;S. Chow;M. Egerstedt;Jun Lu;Haomin Zhou - 通讯作者:
Haomin Zhou
A Weak Galerkin Finite Element Method for a Type of Fourth Order Problem Arising from Fluorescence Tomography
解决一类荧光断层扫描四阶问题的弱伽辽金有限元方法
- DOI:
10.1007/s10915-016-0325-3 - 发表时间:
2015-10 - 期刊:
- 影响因子:2.5
- 作者:
Chunmei Wang;Haomin Zhou - 通讯作者:
Haomin Zhou
Optimal Sensor Positioning; A Probability Perspective Study
最佳传感器定位;
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.1
- 作者:
S. Kang;Seong Jun Kim;Haomin Zhou - 通讯作者:
Haomin Zhou
Parametric Fokker-Planck Equation
参数福克-普朗克方程
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Wuchen Li;Shu Liu;H. Zha;Haomin Zhou - 通讯作者:
Haomin Zhou
Why Shallow Networks Struggle with Approximating and Learning High Frequency: A Numerical Study
为什么浅层网络在高频逼近和学习方面遇到困难:一项数值研究
- DOI:
10.48550/arxiv.2306.17301 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shijun Zhang;Hongkai Zhao;Yimin Zhong;Haomin Zhou - 通讯作者:
Haomin Zhou
Haomin Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haomin Zhou', 18)}}的其他基金
Collaborative Research: Theory, computation and applications of parameterized Wasserstein gradient and Hamiltonian flows
合作研究:参数化 Wasserstein 梯度和哈密顿流的理论、计算和应用
- 批准号:
2307465 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
ATD: Algorithm, Analysis, and Prediction for Nonlinear and Non-Stationary Signals via Data-Driven Iterative Filtering Methods
ATD:通过数据驱动的迭代滤波方法对非线性和非平稳信号进行算法、分析和预测
- 批准号:
1830225 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Prediction, Optimization and Control for Information Propagation on Networks: A Differential Equation and Mass Transportation Based Approach
合作研究:网络信息传播的预测、优化和控制:基于微分方程和大众运输的方法
- 批准号:
1620345 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Theory, Methods for Diffusive Optical Imaging, Graph Based Fokker-Planck Equations and Mass Transportations
扩散光学成像的理论、方法、基于图的福克-普朗克方程和质量传输
- 批准号:
1419027 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
ATD: Collaborative Research: Multiscale and Stochastic Methods for Inverse Source Problems and Signal Analysis
ATD:协作研究:逆源问题和信号分析的多尺度随机方法
- 批准号:
1042998 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Computing Information in Image Processing and Stochastic Differential Equations
职业:图像处理和随机微分方程中的计算信息
- 批准号:
0645266 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
相似海外基金
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
- 批准号:
2340042 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Creating a reflective, assessment workbook for University teachers to enhance teaching techniques and improve student engagement, by incorporating International Baccalaureate (IB) teaching practices
通过纳入国际文凭 (IB) 教学实践,为大学教师创建反思性评估工作簿,以提高教学技巧并提高学生参与度
- 批准号:
24K06129 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
- 批准号:
24K20733 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of new molecular self-temperature sensing techniques using luminescence-absorption hybrid thermometry
利用发光-吸收混合测温法开发新型分子自温度传感技术
- 批准号:
24K17691 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel techniques of percutaneous sonography-guided surgical operations (SonoSurgery
经皮超声引导外科手术新技术(SonoSurgery
- 批准号:
10087309 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
ConSenT: Connected Sensing Techniques: Cooperative Radar Networks Using Joint Radar and Communication Waveforms
ConSenT:互联传感技术:使用联合雷达和通信波形的协作雷达网络
- 批准号:
EP/Y035933/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
ERI: SDR Beyond Radio: Enabling Experimental Research in Multi-Node Optical Wireless Networks via Software Defined Radio Tools and Techniques
ERI:超越无线电的 SDR:通过软件定义无线电工具和技术实现多节点光无线网络的实验研究
- 批准号:
2347514 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
- 批准号:
2348490 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant