Theory, Methods for Diffusive Optical Imaging, Graph Based Fokker-Planck Equations and Mass Transportations

扩散光学成像的理论、方法、基于图的福克-普朗克方程和质量传输

基本信息

  • 批准号:
    1419027
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-15 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

This research project concerns theoretical and computational aspects of inverse source problems and mass transport equations. Inverse source problems have a wide range of applications in science, engineering, and medicine. Among different types of inverse source problems, diffusive optical imaging, such as Fluorescence Molecular Tomography (FMT), is particularly important. FMT uses harmless infrared light, instead of X-ray, to capture molecular specific inclusions in biological tissues. It offers great potential in early cancer detection and drug monitoring. However, diffusive optical imaging demands large scale computation and careful treatment of the ill-posedness due to the diffusive nature of light propagation in tissues. This project aims to develop a new efficient and robust computation strategy for inverse source problems to improve image resolution and speed up computation significantly. Optimal mass transport theory plays a crucial role in many important applications, such as logistics, transportation, physics, and chemistry, and the theory also has potential application to study information propagation on social media. Despite remarkable development in the theory in continuous settings in recent years, much less is known concerning the problems on graphs or networks. This project will conduct theoretical and numerical analysis of graph-based mass transport problems, to design efficient and accurate simulation methodologies and to apply them to data analytics. The research activities will be integrated with education and training of undergraduates, graduate students, and postdocs through seminars and courses.This project includes research in two areas: numerical methods for inverse source problems, and theoretical and numerical analyses for graph-based Fokker-Planck equations and mass transport problems. For inverse source problems, the research aims to develop a new 2-stage methodology, called orthogonal solution and kernel correction algorithm, to separate the competing requirements on regularity and boundary data fidelity in the common regularization approach, so that both requirements can be addressed more effectively. The method leverages an adaptive multiscale basis, the finite element method, and the spectral method to gain significant computation speed up and resolution improvement. The method can be integrated into FMT data acquisition equipment. Understanding of the Fokker-Planck equation and optimal mass transport theory that play crucial roles in many important applications has undergone remarkable development in continuous settings in recent years, but much less is known when one considers the problems on graphs or networks. This project will conduct theoretical and numerical analysis of graph based Fokker-Planck equations and mass transport problems, to design efficient and accurate simulation methodologies and to apply them to data analytics, which aim to understand and to optimize strategies to handle information hidden in large scale, high dimension data sets.
本研究计画系关于反源问题与物质输运方程式之理论与计算。 反源问题在科学、工程和医学中有着广泛的应用。 在不同类型的反源问题中,扩散光学成像,如荧光分子层析成像(FMT),是特别重要的。 FMT使用无害的红外光而不是X射线来捕获生物组织中的分子特异性内含物。它在早期癌症检测和药物监测方面具有巨大潜力。 然而,由于光在组织中传播的漫射性质,漫射光学成像需要大规模的计算和对不适定性的仔细处理。 本计画旨在发展一种新的有效且强健的计算策略来求解源反问题,以提高影像解析度并大幅提升计算速度。 最优质量传输理论在物流、运输、物理和化学等许多重要应用中起着至关重要的作用,该理论在研究社交媒体上的信息传播方面也具有潜在的应用价值。尽管近年来连续环境下的理论有了显著的发展,但关于图或网络上的问题却知之甚少。 该项目将对基于图形的公共交通问题进行理论和数值分析,设计高效准确的模拟方法,并将其应用于数据分析。本研究项目将通过研讨会和课程,与本科生、研究生和博士后的教育和培训相结合。本项目包括两个领域的研究:逆源问题的数值方法,以及基于图形的Fokker-Planck方程和质量输运问题的理论和数值分析。 对于源问题的反问题,本研究的目的是开发一种新的两阶段方法,称为正交解和核校正算法,以分离的正则性和边界数据保真度的竞争要求,在共同的正则化方法,使这两个要求可以更有效地解决。该方法利用自适应多尺度基,有限元方法,谱方法获得显着的计算速度和分辨率的提高。该方法可以集成到FMT数据采集设备中。 Fokker-Planck方程和最优质量输运理论在许多重要的应用中起着至关重要的作用,近年来在连续环境中的理解经历了显着的发展,但当人们考虑图或网络问题时,所知甚少。 该项目将对基于图形的Fokker-Planck方程和质量传输问题进行理论和数值分析,设计有效和准确的模拟方法,并将其应用于数据分析,旨在了解和优化处理隐藏在大规模高维数据集中的信息的策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haomin Zhou其他文献

Method of evolving junctions: A new approach to optimal path-planning in 2D environments with moving obstacles
演化路口的方法:具有移动障碍物的二维环境中最优路径规划的新方法
  • DOI:
    10.1177/0278364917707252
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wuchen Li;S. Chow;M. Egerstedt;Jun Lu;Haomin Zhou
  • 通讯作者:
    Haomin Zhou
A Weak Galerkin Finite Element Method for a Type of Fourth Order Problem Arising from Fluorescence Tomography
解决一类荧光断层扫描四阶问题的弱伽辽金有限元方法
  • DOI:
    10.1007/s10915-016-0325-3
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Chunmei Wang;Haomin Zhou
  • 通讯作者:
    Haomin Zhou
Why Shallow Networks Struggle with Approximating and Learning High Frequency: A Numerical Study
为什么浅层网络在高频逼近和学习方面遇到困难:一项数值研究
  • DOI:
    10.48550/arxiv.2306.17301
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shijun Zhang;Hongkai Zhao;Yimin Zhong;Haomin Zhou
  • 通讯作者:
    Haomin Zhou
Optimal control for stochastic nonlinear Schrodinger equation on graph
图上随机非线性薛定谔方程的最优控制
Parametric Fokker-Planck Equation
参数福克-普朗克方程

Haomin Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haomin Zhou', 18)}}的其他基金

Collaborative Research: Theory, computation and applications of parameterized Wasserstein gradient and Hamiltonian flows
合作研究:参数化 Wasserstein 梯度和哈密顿流的理论、计算和应用
  • 批准号:
    2307465
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ATD: Algorithm, Analysis, and Prediction for Nonlinear and Non-Stationary Signals via Data-Driven Iterative Filtering Methods
ATD:通过数据驱动的迭代滤波方法对非线性和非平稳信号进行算法、分析和预测
  • 批准号:
    1830225
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Prediction, Optimization and Control for Information Propagation on Networks: A Differential Equation and Mass Transportation Based Approach
合作研究:网络信息传播的预测、优化和控制:基于微分方程和大众运输的方法
  • 批准号:
    1620345
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Multiscale and Stochastic Methods for Inverse Source Problems and Signal Analysis
ATD:协作研究:逆源问题和信号分析的多尺度随机方法
  • 批准号:
    1042998
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Computing Information in Image Processing and Stochastic Differential Equations
职业:图像处理和随机微分方程中的计算信息
  • 批准号:
    0645266
  • 财政年份:
    2007
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
PDE Techniques in Wavelet Based Image Processing
小波图像处理中的偏微分方程技术
  • 批准号:
    0410062
  • 财政年份:
    2004
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
  • 批准号:
    2750689
  • 财政年份:
    2025
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
  • 批准号:
    2686844
  • 财政年份:
    2025
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
  • 批准号:
    DE240100316
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Early Career Researcher Award
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
  • 批准号:
    2907463
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
  • 批准号:
    EP/Z532976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
  • 批准号:
    2333724
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
  • 批准号:
    2422291
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了