Numerical Solution of Partial Differential Equations and Applications

偏微分方程数值解及其应用

基本信息

  • 批准号:
    0411388
  • 负责人:
  • 金额:
    $ 12.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

Many complex physical phenomena can be modeled mathematically by systems of partial differential equations (PDEs). For example, the response of a solid material to forces imposed on it can be modeled by the equations of elasticity. Solutions of these equations can then be used for many purposes, such as to predict the behavior of a solid structure or improve its design. The equations of elasticity are far too complex to solve exactly in realistic situations. However, high performance computers with advanced algorithms may obtain accurate solutions. A major goal of this work is to develop efficient and certifiably reliable solution algorithms for elasticity. Following on recent breakthroughs which enabled the development and certification of such methods for problems involving two-dimensional deformations, the investigator and his collaborators will develop analogous methods for the much more difficult situation of full three-dimensional deformations.The second area of investigation concerns the development of computer algorithms for solving Einstein's field equations of general relativity, which are the basis for the modern understanding of gravity. Computation has recently joined theory and experiment as a third mode of inquiry into gravity, setting the stage for major new advances in understanding, but also bringing tremendous challenges. The geometric and physical content of general relativity can be expressed in the language of PDEs, and thus, in principle, made amenable to numerical simulation. But this is achieved only at the expense of extremely complex systems of PDEs, which have proven very difficult to solve numerically. The emphasis here will be on understanding the fundamental issues relevant to the numerical solution of the Einstein equations in cases of physical interest.This work has many broader impacts. Robust and reliable methods for solving the equations of elasticity are needed in many challenging industrial and engineering applications, for example for aircraft, advanced buildings and bridges, and offshore oil platforms. Recent design failures, some of them catastrophic, have been traced to inadequate numerical algorithms for elasticity. Thus this project has the potential to contribute to public safety and prosperity. Computational algorithms for general relativity are recognized as crucial to the success of the emerging fundamental science of gravitational astronomy, another large potential impact of this project. The techniques developed in this work are expected to apply to other important systems of PDEs as well. Moreover, the project will contribute to the infrastructure of science. It will advance the development of an interdisciplinary community involving mathematicians in gravitational astrophysics, both through collaborations and through a workshop that the investigator will organize during the project period. The investigator will disseminate the results of the research broadly through publication, conference and seminar presentations, and the world wide web. Finally, the project will directly support the training and scientific breadth of young scientists by involving students and postdocs in important, cutting-edge, interdisciplinary research.
许多复杂的物理现象都可以用偏微分方程(PDE)系统进行数学建模。 例如,固体材料对施加在其上的力的响应可以通过弹性方程来建模。 这些方程的解可以用于许多目的,例如预测固体结构的行为或改进其设计。 弹性力学方程太复杂了,在实际情况下很难精确求解。 然而,具有高级算法的高性能计算机可以获得精确的解。 这项工作的一个主要目标是开发高效和可靠的解决方案算法的弹性。 继最近的突破,使发展和证明这种方法的问题,涉及二维变形,研究者和他的合作者将发展类似的方法,为更困难的情况下,全三维变形。第二个领域的调查涉及发展的计算机算法,以解决爱因斯坦的场方程的广义相对论,这是现代对重力的理解的基础。 计算最近加入了理论和实验,成为研究引力的第三种模式,为理解方面的重大新进展奠定了基础,但也带来了巨大的挑战。 广义相对论的几何和物理内容可以用偏微分方程的语言来表达,因此原则上可以进行数值模拟。 但这只能以极其复杂的偏微分方程系统为代价,而这些系统已被证明非常难以数值求解。 这里的重点将是理解与物理意义上的爱因斯坦方程的数值解相关的基本问题。这项工作有许多更广泛的影响。 在许多具有挑战性的工业和工程应用中,例如飞机,先进的建筑物和桥梁以及海上石油平台,都需要鲁棒和可靠的方法来求解弹性方程。 最近的设计失败,其中一些是灾难性的,已被追溯到弹性数值算法不足。 因此,该项目有可能促进公共安全和繁荣。 广义相对论的计算算法被认为是新兴的引力天文学基础科学成功的关键,这是该项目的另一个巨大的潜在影响。 在这项工作中开发的技术,预计将适用于其他重要系统的偏微分方程以及。 此外,该项目将有助于科学的基础设施。 它将通过合作和研究人员将在项目期间组织的讲习班,推动一个有引力天体物理学数学家参与的跨学科社区的发展。 研究人员将通过出版物、会议和研讨会报告以及万维网广泛传播研究结果。 最后,该项目将通过让学生和博士后参与重要的、前沿的、跨学科的研究,直接支持年轻科学家的培训和科学广度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Arnold其他文献

Données IRM, efficacité et sécurité d’emploi du tolébrutinib chez des patients atteints d’une SEP très active : données à 2 ans de l’étude de sécurité d’emploi à long terme de phase 2b (LTS, <em>Long-Term Safety</em>)
  • DOI:
    10.1016/j.neurol.2023.01.705
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert J. Fox;Jiwon Oh;Douglas Arnold;Timothy J. Turner;Anthony Traboulsee;Daniel S. Reich
  • 通讯作者:
    Daniel S. Reich
A Generative Model for Automatic Detection of Resolving Multiple Sclerosis Lesions
用于自动检测解决多发性硬化症病变的生成模型
  • DOI:
    10.1007/978-3-319-12289-2_11
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Elliott;Douglas Arnold;D. L. Collins;T. Arbel
  • 通讯作者:
    T. Arbel
Les effets de l’évobrutinib, un inhibiteur de la tyrosine kinase de Bruton, sur les lésions à expansion lente : un nouveau marqueur d’imagerie de la perte tissulaire chronique dans la sclérose en plaques
  • DOI:
    10.1016/j.neurol.2022.02.414
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Douglas Arnold;Colm Elliott;Xavier Montalban;Emily Martin;Yann Hyvert;Davorka Tomic
  • 通讯作者:
    Davorka Tomic
International Workshop on Standardization in Clinical Magnetic Resonance Spectroscopy Measurements: proceedings and recommendations.
临床磁共振波谱测量标准化国际研讨会:会议记录和建议。
  • DOI:
    10.1016/s1076-6332(05)80838-4
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    F. Shtern;Martin O. Leach;Douglas Arnold;Truman R. Brown;H. Cecil Charles;Jacque D. de Certaines;J. Evelhoch;Alexander R. Margulis;William G. Negendank;Sara J. Nelson;Franco Podo;Peter Styles
  • 通讯作者:
    Peter Styles
Résultats de l’étude d’extension NOVA évaluant la préférence des patients pour l’administration sous-cutanée (SC) versus intraveineuse (IV) de natalizumab (NTZ) avec le schéma Q6W (toutes les 6 semaines)
  • DOI:
    10.1016/j.neurol.2024.02.284
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Heinz Wiendl;John Foley;Gilles Defer;Lana Zhovtis Ryerson;Jeffrey A. Cohen;Douglas Arnold;Helmut Butzkueven;Gary Cutter;Gavin Giovannoni;Joep Killestein;Rose Domingo-Horne;Marie Toukam;Aimie Nunn;Susie Sinks;Amir-Hadi Maghzi;Robert Kuhelj;Tyler Lasky
  • 通讯作者:
    Tyler Lasky

Douglas Arnold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Arnold', 18)}}的其他基金

Numerical Solution of Partial Differential Equations: Algorithms, Analysis, and Applications
偏微分方程的数值解:算法、分析与应用
  • 批准号:
    1719694
  • 财政年份:
    2017
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
Applications and development of finite element exterior calculus
有限元外微积分的应用与发展
  • 批准号:
    1418805
  • 财政年份:
    2014
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Continuing Grant
Development and applications of the finite element exterior calculus
有限元外微积分的发展与应用
  • 批准号:
    1115291
  • 财政年份:
    2011
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Continuing Grant
Finite element exterior calculus and applications
有限元外微积分及其应用
  • 批准号:
    0713568
  • 财政年份:
    2007
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
IMA New Directions Program: Visitors and Short Courses
IMA 新方向计划:访客和短期课程
  • 批准号:
    0307274
  • 财政年份:
    2003
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Continuing Grant
Numerical Solution of Differential Equations in Mechanics
力学微分方程的数值解
  • 批准号:
    0296133
  • 财政年份:
    2001
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
Numerical Solution of Partial Differential Equations and Applications
偏微分方程数值解及其应用
  • 批准号:
    0196549
  • 财政年份:
    2001
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
Numerical Solution of Partial Differential Equations and Applications
偏微分方程数值解及其应用
  • 批准号:
    0107233
  • 财政年份:
    2001
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
Institute for Mathematics and its Applications
数学及其应用研究所
  • 批准号:
    9810289
  • 财政年份:
    2000
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Cooperative Agreement
Numerical Methods in General Relativity
广义相对论中的数值方法
  • 批准号:
    9972835
  • 财政年份:
    1999
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant

相似国自然基金

相似海外基金

Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2022
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
  • 批准号:
    569181-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2021
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2020
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Discovery Grants Program - Individual
Moving Transformation Methods for the Numerical Solution of Partial Differential Equations
偏微分方程数值解的移动变换方法
  • 批准号:
    540111-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 12.41万
  • 项目类别:
    University Undergraduate Student Research Awards
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2019
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2018
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Partial Differential Equations and Their Numerical Solution
随机偏微分方程及其数值解
  • 批准号:
    1816378
  • 财政年份:
    2018
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Continuing Grant
Parallel Space-Time Approaches for the Numerical Solution of Partial Differential Equations
偏微分方程数值解的并行时空方法
  • 批准号:
    311796-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Solution of Partial Differential Equations: Algorithms, Analysis, and Applications
偏微分方程的数值解:算法、分析与应用
  • 批准号:
    1719694
  • 财政年份:
    2017
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了