Quantum Theory of Competing Orders
竞争秩序的量子理论
基本信息
- 批准号:0411931
- 负责人:
- 金额:$ 34.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum mechanics forms the theoretical basis of many novel materials that continue to be discovered today, such as high temperature superconductors, ruthenates, manganates, fullerenes, and heavy electron materials. Without quantum mechanics even the most common metals, insulators, and semiconductors cannot be understood. Of fundamental interest are those properties that reflect quantum mechanics on a macroscopic scale, which are continuously challenging us to extend our perceptions of matter. New concepts, such as quantum phase transitions between fundamentally distinct states of matter at absolute zero, driven by Heisenberg's uncertainty relation lead to to spectacular consequences in observations at temperatures as high as room temperature. The ubiquity of such transitions in many varied materials of great technological interest behooves us to approach the theory of quantum phase transitions with the sophistication of theoretical physics. Control over properties of quantum states of matter involving strongly interacting, many-body degrees of freedom remains an engaging intellectual enterprise. We are only beginning to realize that underlying the materials science, there must be a set of physical principles, most likely simple in character; however, discovering these principles requires a genuine shift in thinking. One can no longer think in terms of physics on single length and energy scales, because the effects are collective.An emerging idea is the notion of competing order that underlies the complex systems of interest. It is almost a truism that in a complex system any symmetry that can be broken must be broken; however, many of the ordered states that result from these broken symmetries are effectively hidden, but surreptitiously control the general properties of matter. Thus, the discoveries of new hidden order are not only intellectually fascinating, but also enormously practical to tailor materials for our purposes, such as superconductors with the highest transition temperature. To this day, the roster of states of matter with broken symmetries is limited despite the limitless symmetries that can be broken in a strongly correlated electronic system. The difficulty is that it is not always clear what should be the effective Hamiltonian, nor is it clear how a complex quantum order fits into the phase diagram of a real material. Here, we address both of these issues by considering concrete examples from high temperature superconductors, a variety of quantum phase transitions and dissipative quantum systems. An aspect of this research consists of developing theoretical tools from the perspective of field theory, as applied to the theory of matter. Another aspect concerns the development of phenomenological ideas for direct applications to experimental systems. Yet another aspect involves computation, but augmented by sophisticated ideas of scaling and quantum criticality.The broader impacts of this work will involve educating and training graduate students to assume leadership roles in academic and industrial environments. This will be accomplished not only by mentoring students at the home institution, but also by encouraging them to attend professional meetings, where they can present results of their research activities and exchange ideas with others in the field. The existing research group already includes a woman graduate student and an effort will be made to recruit more women and minorities. Plans are underway to incorporate research activities into a modern graduate level textbook in condensed matter physics. The results of the research will also be broadly disseminated through publications in professional journals and presentations at national and international conferences. It is hoped that the research will lead to further understanding of novel materials for the benefit of society.%%% Quantum mechanics forms the theoretical basis of many novel materials that continue to be discovered today, such as high temperature superconductors, ruthenates, manganates, fullerenes, and heavy electron materials. Without quantum mechanics even the most common metals, insulators, and semiconductors cannot be understood. Of fundamental interest are those properties that reflect quantum mechanics on a macroscopic scale, which are continuously challenging us to extend our perceptions of matter. New concepts, such as quantum phase transitions between fundamentally distinct states of matter at absolute zero, driven by Heisenberg's uncertainty relation lead to to spectacular consequences in observations at temperatures as high as room temperature. The ubiquity of such transitions in many varied materials of great technological interest behooves us to approach the theory of quantum phase transitions with the sophistication of theoretical physics. Control over properties of quantum states of matter involving strongly interacting, many-body degrees of freedom remains an engaging intellectual enterprise. We are only beginning to realize that underlying the materials science, there must be a set of physical principles, most likely simple in character; however, discovering these principles requires a genuine shift in thinking. One can no longer think in terms of physics on single length and energy scales, because the effects are collective.An emerging idea is the notion of competing order that underlies the complex systems of interest. It is almost a truism that in a complex system any symmetry that can be broken must be broken; however, many of the ordered states that result from these broken symmetries are effectively hidden, but surreptitiously control the general properties of matter. Thus, the discoveries of new hidden order are not only intellectually fascinating, but also enormously practical to tailor materials for our purposes, such as superconductors with the highest transition temperature. To this day, the roster of states of matter with broken symmetries is limited despite the limitless symmetries that can be broken in a strongly correlated electronic system. The difficulty is that it is not always clear what should be the effective Hamiltonian, nor is it clear how a complex quantum order fits into the phase diagram of a real material. Here, we address both of these issues by considering concrete examples from high temperature superconductors, a variety of quantum phase transitions and dissipative quantum systems. An aspect of this research consists of developing theoretical tools from the perspective of field theory, as applied to the theory of matter. Another aspect concerns the development of phenomenological ideas for direct applications to experimental systems. Yet another aspect involves computation, but augmented by sophisticated ideas of scaling and quantum criticality.The broader impacts of this work will involve educating and training graduate students to assume leadership roles in academic and industrial environments. This will be accomplished not only by mentoring students at the home institution, but also by encouraging them to attend professional meetings, where they can present results of their research activities and exchange ideas with others in the field. The existing research group already includes a woman graduate student and an effort will be made to recruit more women and minorities. Plans are underway to incorporate research activities into a modern graduate level textbook in condensed matter physics. The results of the research will also be broadly disseminated through publications in professional journals and presentations at national and international conferences. It is hoped that the research will lead to further understanding of novel materials for the benefit of society.***
量子力学构成了当今不断发现的许多新型材料的理论基础,例如高温超导体、钌酸盐、锰酸盐、富勒烯和重电子材料。 如果没有量子力学,即使是最常见的金属、绝缘体和半导体也无法被理解。 最重要的是那些在宏观尺度上反映量子力学的性质,它们不断地挑战着我们扩展我们对物质的认知。 新概念,例如在绝对零时基本不同的物质状态之间的量子相变,由海森堡的不确定性关系驱动,导致在高达室温的温度下的观测产生惊人的结果。 这种转变在许多具有重大技术意义的材料中普遍存在,这使得我们有必要用理论物理学的复杂性来研究量子相变理论。 对涉及强相互作用、多体自由度的物质量子态特性的控制仍然是一项引人入胜的智力事业。 我们才刚刚开始认识到,在材料科学的基础上,必须有一套物理原理,而且性质很可能很简单;然而,发现这些原则需要真正的思维转变。 人们不能再从单一长度和能量尺度的物理学角度思考,因为影响是集体的。一种新兴的想法是竞争秩序的概念,它是复杂系统的基础。 几乎不言而喻的是,在复杂的系统中,任何可以打破的对称性都必须被打破。然而,由于这些对称性破缺而产生的许多有序态实际上被隐藏起来,但却秘密地控制着物质的一般性质。 因此,新隐藏秩序的发现不仅在智力上令人着迷,而且对于为我们的目的定制材料(例如具有最高转变温度的超导体)也非常实用。 直到今天,尽管在强相关电子系统中可以打破无限的对称性,但对称性破缺的物质状态仍然有限。 困难在于,并不总是清楚什么应该是有效的哈密顿量,也不清楚复杂的量子级如何适合真实材料的相图。 在这里,我们通过考虑高温超导体、各种量子相变和耗散量子系统的具体例子来解决这两个问题。 这项研究的一个方面包括从场论的角度开发理论工具,并将其应用于物质理论。 另一方面涉及现象学思想的发展以直接应用于实验系统。 另一方面涉及计算,但通过缩放和量子临界性的复杂思想得到增强。这项工作的更广泛影响将涉及教育和培训研究生在学术和工业环境中担任领导角色。 这不仅可以通过在母校指导学生来实现,还可以通过鼓励他们参加专业会议来实现,在会议上他们可以展示他们的研究活动成果并与该领域的其他人交流想法。 现有的研究小组已经包括一名女研究生,并将努力招募更多女性和少数族裔。 目前正在计划将研究活动纳入现代研究生凝聚态物理学教科书。 研究结果还将通过专业期刊上的出版物以及在国内和国际会议上的演讲来广泛传播。 希望这项研究能够进一步了解新型材料,造福社会。%%%量子力学构成了当今不断发现的许多新型材料的理论基础,例如高温超导体、钌酸盐、锰酸盐、富勒烯和重电子材料。 如果没有量子力学,即使是最常见的金属、绝缘体和半导体也无法被理解。 最重要的是那些在宏观尺度上反映量子力学的性质,它们不断地挑战着我们扩展我们对物质的认知。 新概念,例如在绝对零时基本不同的物质状态之间的量子相变,由海森堡的不确定性关系驱动,导致在高达室温的温度下的观测产生惊人的后果。 这种转变在许多具有重大技术意义的材料中普遍存在,这使得我们有必要用理论物理学的复杂性来研究量子相变理论。 对涉及强相互作用、多体自由度的物质量子态特性的控制仍然是一项引人入胜的智力事业。 我们才刚刚开始认识到,在材料科学的基础上,必须有一套物理原理,而且性质很可能很简单;然而,发现这些原则需要真正的思维转变。 人们不能再从单一长度和能量尺度的物理学角度思考,因为影响是集体的。一种新兴的想法是竞争秩序的概念,它是复杂系统的基础。 几乎不言而喻的是,在复杂的系统中,任何可以打破的对称性都必须被打破。然而,由于这些对称性破缺而产生的许多有序态实际上被隐藏起来,但却秘密地控制着物质的一般性质。 因此,新隐藏秩序的发现不仅在智力上令人着迷,而且对于为我们的目的定制材料(例如具有最高转变温度的超导体)也非常实用。 直到今天,尽管在强相关电子系统中可以打破无限的对称性,但对称性破缺的物质状态仍然有限。 困难在于,并不总是清楚什么应该是有效的哈密顿量,也不清楚复杂的量子级如何适合真实材料的相图。 在这里,我们通过考虑高温超导体、各种量子相变和耗散量子系统的具体例子来解决这两个问题。 这项研究的一个方面包括从场论的角度开发理论工具,并将其应用于物质理论。 另一方面涉及现象学思想的发展以直接应用于实验系统。 另一方面涉及计算,但通过缩放和量子临界性的复杂思想得到增强。这项工作的更广泛影响将涉及教育和培训研究生在学术和工业环境中担任领导角色。 这不仅可以通过在母校指导学生来实现,还可以通过鼓励他们参加专业会议来实现,在会议上他们可以展示他们的研究活动成果并与该领域的其他人交流想法。 现有的研究小组已经包括一名女研究生,并将努力招募更多女性和少数族裔。 目前正在计划将研究活动纳入现代研究生凝聚态物理学教科书。 研究结果还将通过专业期刊上的出版物以及在国内和国际会议上的演讲来广泛传播。 希望这项研究能够进一步了解新型材料,造福社会。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudip Chakravarty其他文献
Dynamic properties of a two-dimensional Heisenberg antiferromagnet at low temperatures.
二维海森堡反铁磁体在低温下的动态特性。
- DOI:
10.1103/physrevlett.62.835 - 发表时间:
1989 - 期刊:
- 影响因子:8.6
- 作者:
Stéphane Tyč;Bertrand I. Halperin;Sudip Chakravarty - 通讯作者:
Sudip Chakravarty
Sudip Chakravarty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sudip Chakravarty', 18)}}的其他基金
2010 Correlated Electron Systems Gordon Research Conference
2010年相关电子系统戈登研究会议
- 批准号:
1019153 - 财政年份:2010
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Quantum Fluctuations and Broken Symmetries in Correlated Electron Systems
相关电子系统中的量子涨落和对称性破缺
- 批准号:
1004520 - 财政年份:2010
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Quantum Aspects of Condensed Matter
凝聚态物质的量子方面
- 批准号:
9971138 - 财政年份:1999
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Quantum Aspects of Condensed Matter
凝聚态物质的量子方面
- 批准号:
9531575 - 财政年份:1996
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Novel Correlation Effects in Condensed Matter Physics
凝聚态物理中的新颖相关效应
- 批准号:
9220416 - 财政年份:1993
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Magnetism in Light of High Temperature Superconductivity, Granular Superconductors, and Mott Insulators
从高温超导性、粒状超导体和莫特绝缘体角度看磁性
- 批准号:
8907664 - 财政年份:1989
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Quantum Tunneling in SQUIDS and Josephson Junctions and Monte Carlo Simulation of Quantum Spin Systems (Materials Research)
SQUIDS 和约瑟夫森结中的量子隧道以及量子自旋系统的蒙特卡罗模拟(材料研究)
- 批准号:
8301510 - 财政年份:1983
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
- 批准号:
DP240101511 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Projects
Numerical simulations of lattice field theory
晶格场论的数值模拟
- 批准号:
2902259 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Studentship
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Research Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant














{{item.name}}会员




