Data-Driven Modeling of Shape, Reflection, and Interreflection
形状、反射和互反射的数据驱动建模
基本信息
- 批准号:0413198
- 负责人:
- 金额:$ 28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-11-15 至 2008-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop robust algorithms for reconstructing the 3D shape and reflectance properties of real world scenes. The distinguishing feature of the proposed approach is the modeling of global light transport, taking into account both realistic reflection and global interreflection of light with surfaces in the unknown scene. Modeling realistic light transport is a open problem with major importance in computer vision, due to the fact that everyday materials reflect light in complex ways (e.g., wood, hair, velvet), and because the appearance of geometrically complex scenes is strongly affected by interreflection. This project seeks to model reflection in a very general setting, where the shape and the reflectance properties of the scene are both unknown and unconstrained. Modeling of interreflection will focus on diffuse scattering, and fully account for global light propagation through the scene. Toward this objective, a new computational framework is introduced that uses data-driven models of light transport that can be captured directly from photographs, and recovers scene structure without the need for complex simulations or optimizations of the underlying physical process. A key advantage of such data-driven models is that they work robustly in very general conditions.The proposed work opens up new avenues in 3D shape sensing technology, a problem with widespread applications in robotics, visualization, mapping, aerial imaging, and virtual reality. The ability to capture material models on real objects will improve realism in computer graphics, and impacts applications such as entertainment, visualization, and the communication of visual media. The project will involve undergraduate and graduate research projects and the outcome will be a set of results and tools that will be broadly disseminated and incorporated into research projects and educational initiatives at the University of Washington.
这个项目的目标是开发强大的算法,用于重建真实的世界场景的三维形状和反射特性。所提出的方法的显着特点是全局光传输的建模,同时考虑到现实的反射和全局光与未知场景中的表面的相互反射。 建模真实的光传输是计算机视觉中具有重大意义的开放问题,这是由于日常材料以复杂的方式反射光的事实(例如,木材、头发、天鹅绒),并且因为几何复杂场景的外观受到相互反射的强烈影响。这个项目试图在一个非常一般的设置,其中的形状和场景的反射属性都是未知的和不受约束的反射模型。 相互反射的建模将集中在漫散射上,并充分考虑通过场景的全局光传播。 为了实现这一目标,引入了一种新的计算框架,该框架使用可以直接从照片中捕获的光传输的数据驱动模型,并恢复场景结构,而不需要对底层物理过程进行复杂的模拟或优化。这种数据驱动的模型的一个关键优势是,他们在非常一般的条件下工作鲁棒性。拟议的工作开辟了新的途径,在3D形状传感技术,一个问题,广泛应用于机器人,可视化,地图,航空成像和虚拟现实。在真实的物体上捕捉材料模型的能力将提高计算机图形学中的真实感,并影响诸如娱乐、可视化和视觉媒体通信的应用。 该项目将涉及本科生和研究生的研究项目,其成果将是一套成果和工具,将广泛传播并纳入华盛顿大学的研究项目和教育举措。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Seitz其他文献
Steven Seitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Seitz', 18)}}的其他基金
BIGDATA: Small: DA: DCM: Labeling the World
大数据: 小: DA: DCM: 标记世界
- 批准号:
1250793 - 财政年份:2013
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Reconstructing Cities from Photographs
RI:媒介:合作研究:从照片重建城市
- 批准号:
0963657 - 财政年份:2010
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
RI-Small: Multi-level Priors for Multi-view Stereo
RI-Small:多视图立体的多级先验
- 批准号:
0811878 - 财政年份:2008
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Discovering and Reconstructing Scenes from Photos on the Internet
从互联网上的照片中发现并重建场景
- 批准号:
0743635 - 财政年份:2007
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
ITR/AP(CISE): Capturing and Modeling Physics from Images
ITR/AP(CISE):从图像中捕捉物理现象并对其进行建模
- 批准号:
0113007 - 财政年份:2001
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
CAREER: Plenoptic Scene Reconstruction
职业:全光场景重建
- 批准号:
9984672 - 财政年份:2000
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
CAREER: Plenoptic Scene Reconstruction
职业:全光场景重建
- 批准号:
0049095 - 财政年份:2000
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Decision and Research Support Systems in Artificial Intelligence
人工智能中的决策和研究支持系统
- 批准号:
8612072 - 财政年份:1986
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23K25946 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
- 批准号:
2404369 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
- 批准号:
2404368 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23H01250 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
- 批准号:
2327862 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223985 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223986 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant