RI: Medium: Collaborative Research: Reconstructing Cities from Photographs
RI:媒介:合作研究:从照片重建城市
基本信息
- 批准号:0963657
- 负责人:
- 金额:$ 72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-15 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is focused on research issues associated with producing extremely detailed and accurate 3D geometry and appearance (BRDF) models at city scale from internet collections of photos from various sources containing millions of photos of enormous diversity such as viewing range and conditions, time of day and weather conditions, to name a few. The properties of urban scenes may include low-texture surfaces, reflective and transparent materials, and repeated structures that challenge existing reconstruction algorithms. The investigators will address these challenges with the aim of reconstructing several large US and foreign cities. Historical photos and virtual models may also be incorporated. There are a number of research topics associated with the project. To register photographs and recover sparse geometry at city-scale, a new, unified, structure-from-motion (SfM) algorithm will be designed to take advantage of large, parallel computing platforms. With registered photographs and sparse 3D scene points recovered by SfM, multi-view stereo (MVS) algorithms can reconstruct detailed geometric models. Novel MVS algorithms will then exploit the structure of architectural scenes and volumetric reconstruction methods will be employed to produce annotated models of exceptional accuracy and usability. Digital models are playing an increasingly important role in social, cultural and economic endeavor and are central to next-generation mapping and visualization applications. All models and datasets will be made freely available to researchers and the general public.
这个项目的重点是研究如何在城市尺度上生成极其详细和精确的3D几何和外观(BRDF)模型,这些模型来自互联网上各种来源的照片集合,其中包含数百万张巨大多样性的照片,例如观看范围和条件,一天中的时间和天气条件,等等。城市场景的特性可能包括低纹理表面、反射和透明材料,以及挑战现有重建算法的重复结构。研究人员将以重建几个美国和国外的大城市为目标来解决这些挑战。历史照片和虚拟模型也可以纳入。有许多与该项目相关的研究课题。为了在城市尺度上配准照片和恢复稀疏几何,将设计一种新的、统一的、基于运动的结构(SfM)算法,以利用大型并行计算平台。多视立体(MVS)算法利用SfM恢复的配准照片和稀疏的三维场景点,可以重建详细的几何模型。然后,新的MVS算法将利用建筑场景的结构和体积重建方法来产生具有卓越准确性和可用性的注释模型。数字模型在社会、文化和经济领域发挥着越来越重要的作用,是下一代地图和可视化应用的核心。所有模型和数据集将免费提供给研究人员和公众。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Seitz其他文献
Steven Seitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Seitz', 18)}}的其他基金
BIGDATA: Small: DA: DCM: Labeling the World
大数据: 小: DA: DCM: 标记世界
- 批准号:
1250793 - 财政年份:2013
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
RI-Small: Multi-level Priors for Multi-view Stereo
RI-Small:多视图立体的多级先验
- 批准号:
0811878 - 财政年份:2008
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Discovering and Reconstructing Scenes from Photos on the Internet
从互联网上的照片中发现并重建场景
- 批准号:
0743635 - 财政年份:2007
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Data-Driven Modeling of Shape, Reflection, and Interreflection
形状、反射和互反射的数据驱动建模
- 批准号:
0413198 - 财政年份:2004
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
ITR/AP(CISE): Capturing and Modeling Physics from Images
ITR/AP(CISE):从图像中捕捉物理现象并对其进行建模
- 批准号:
0113007 - 财政年份:2001
- 资助金额:
$ 72万 - 项目类别:
Continuing Grant
CAREER: Plenoptic Scene Reconstruction
职业:全光场景重建
- 批准号:
9984672 - 财政年份:2000
- 资助金额:
$ 72万 - 项目类别:
Continuing Grant
CAREER: Plenoptic Scene Reconstruction
职业:全光场景重建
- 批准号:
0049095 - 财政年份:2000
- 资助金额:
$ 72万 - 项目类别:
Continuing Grant
Decision and Research Support Systems in Artificial Intelligence
人工智能中的决策和研究支持系统
- 批准号:
8612072 - 财政年份:1986
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312955 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313137 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Continuing Grant