Understanding Image-feature and Decision-procedure Choice for Human Face Detection
了解人脸检测的图像特征和决策程序选择
基本信息
- 批准号:0413284
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-01-15 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding Image-feature and Decision-procedure Choice for Human Face DetectionNSF Proposal 0413284AbstractFace detection algorithms have improved significantly in the last five years, in part because of a shift away from handcrafted systems to supervised learning systems that discover effective feature combinations from large amounts of training data. This broad characterization covers three prominent algorithms: the Viola and Jones Ada Boost algorithm, the statistical model approach of Schneiderman, and the SNoW algorithm of Yang et al. However, beyond this broad characterization, these algorithms differ greatly in detail. In particular, they use different image-features and different decision-procedures for determining whether a face is present. Why do these very different algorithms all perform relatively well, and how do the image-feature and decision-procedure choices implicit in these algorithms interact? This study will reveal the underlying fundamentals of these three approaches and others by establishing a common framework for combining and comparing image-feature extraction and decision-procedures. Empirical advances will be made in characterizing face detection tasks in an algorithm independent fashion critical to the development of better face detection algorithms. The practical impact of this research is two-fold. New open source versions of three prominent face detection algorithms will be developed and integrated into the current CSU Face Identification Evaluation System. Downloads of the current system exceeded 7,000 in November 2004, and the inclusion of face detection will enhance this tool. More broadly, better, more reliable face detection is a key stepping stone to better face recognition. Competent, reliable face recognition is highly valuable for many applications such as security. However, the practical value of good face recognition transcends security applications -- computers are more likely to interact helpfully with people they can recognize.
摘要人脸检测算法在过去五年中有了显著的进步,部分原因是从手工制作的系统转向从大量训练数据中发现有效特征组合的监督学习系统。这一宽泛的描述涵盖了三种突出的算法:Viola和Jones Ada Boost算法、Schneiderman的统计模型方法和Yang等人的SNoW算法。然而,除了这些广泛的特征之外,这些算法在细节上差别很大。特别是,他们使用不同的图像特征和不同的决策程序来确定人脸是否存在。为什么这些非常不同的算法都表现得相对较好,这些算法中隐含的图像特征和决策过程选择是如何相互作用的?本研究将揭示这三种方法和其他方法的基本原理,通过建立一个共同的框架来组合和比较图像特征提取和决策过程。在以算法独立的方式描述人脸检测任务方面,将取得经验进展,这对开发更好的人脸检测算法至关重要。这项研究的实际影响是双重的。将开发三个突出的人脸检测算法的新开源版本,并将其集成到当前的CSU人脸识别评估系统中。目前的系统在二零零四年十一月的下载次数超过七千次,而加入人脸识别功能将会加强这套系统的功能。更广泛、更好、更可靠的人脸检测是实现更好的人脸识别的关键基石。胜任、可靠的人脸识别对于安全等许多应用都非常有价值。然而,良好的面部识别的实际价值超越了安全应用——计算机更有可能与它们能识别的人进行有益的互动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J. Ross Beveridge其他文献
CS 0: Culture and Coding
CS 0:文化和编码
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Albert Lionelle;Josette Grinslad;J. Ross Beveridge - 通讯作者:
J. Ross Beveridge
Flag-based detection of weak gas signatures in long-wave infrared hyperspectral image sequences
长波红外高光谱图像序列中基于标志的弱气体特征检测
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Tim Marrinan;J. Ross Beveridge;B. Draper;M. Kirby;C. Peterson - 通讯作者:
C. Peterson
J. Ross Beveridge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J. Ross Beveridge', 18)}}的其他基金
Face and Gesture 2011 Conference Doctoral Consortium
面部与手势 2011 年会议博士联盟
- 批准号:
1103817 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
CISE Research Instrumentation: Multiprocessor and Sensor Hardware for Vision, Learning Planning and Parallel Processing Research
CISE 研究仪器:用于视觉、学习规划和并行处理研究的多处理器和传感器硬件
- 批准号:
9422007 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
- 批准号:41904148
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
Raw-Image微小物体高精度位姿测量法
- 批准号:61105029
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Robust Feature Extraction for Visual Localization using Map-based 360-degree Image Transformation
使用基于地图的 360 度图像转换进行视觉定位的鲁棒特征提取
- 批准号:
24K20872 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Feature-based methods for 3D medical image analysis
基于特征的 3D 医学图像分析方法
- 批准号:
RGPIN-2016-04407 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Understanding of 3-D plasma radiation structure using feature extraction from 2-D image data
使用 2-D 图像数据的特征提取来了解 3-D 等离子体辐射结构
- 批准号:
22K03583 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Generic Image Segmentation Platform for Novel Feature Exploration in Multimodal MR Imaging using Minimally Supervised Machine Learning
使用最小监督机器学习进行多模态 MR 成像新特征探索的通用图像分割平台
- 批准号:
2749493 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Automated Dental Fracture Detection using High Resolution CBCT and Advanced Image Analysis
使用高分辨率 CBCT 和高级图像分析自动检测牙齿骨折
- 批准号:
10491799 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Feature-based methods for 3D medical image analysis
基于特征的 3D 医学图像分析方法
- 批准号:
RGPIN-2016-04407 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development of treatment response prediction system for bone stereotactic body radiotherapy using image feature analysis
利用图像特征分析开发骨立体定向放射治疗治疗反应预测系统
- 批准号:
21K15775 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Automated Dental Fracture Detection using High Resolution CBCT and Advanced Image Analysis
使用高分辨率 CBCT 和高级图像分析自动检测牙齿骨折
- 批准号:
10322271 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Feature-based methods for 3D medical image analysis
基于特征的 3D 医学图像分析方法
- 批准号:
RGPIN-2016-04407 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Research of feature extractable image sensor for deep learning-based image recognition
基于深度学习的图像识别特征提取图像传感器研究
- 批准号:
20K04630 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)