IMR: Development of an Acoustic Phonon Spectroscopy System for Materials Research, Education and Outreach

IMR:开发用于材料研究、教育和推广的声学声子光谱系统

基本信息

  • 批准号:
    0414895
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

Instrumentation will be developed to permit optical generation and time-resolved measurement of coherent acoustic waves at nearly all wavelengths that propagate through most materials. This extraordinary range will permit tabletop experimental study of structural disorder on the same range of length scales, from nearly 1 millimeter, i.e. clearly macroscopic, to as short as 10 nanometers. It also will provide direct experimental access to dynamical changes in structure that occur over a similarly wide range of time scales, from faster than 1 picosecond to many microseconds, given by the acoustic frequency range of roughly 10 MHz - 500 GHz to which access will be gained. This unique materials research capability will be used for fundamental study of complex liquids, amorphous solids, and partially disordered crystals whose key properties are mediated by structural variation on these length and time scales. The instrumentation also will be used for characterization of advanced structures including thin films and multilayer assemblies of interest in microelectronics and many other applications. The instrumentation will provide access to coherent, narrowband acoustic phonons across most of the Brillouin zone in bulk and thin film materials. Non-Technical Summary Sound waves with wavelengths of meters or millimeters are commonly used to probe structures of comparable size, such as features within the earth's mantle, two-by-four beams behind drywall, or fingers and toes (and their motions) inside the womb. The same principles of ultrasonic imaging and probing can apply to much smaller length scales as well, and there are plenty of micrometer and nanometer size structures that need characterization. These include multilayer thin films in microelectronics devices; nanospheres, nanorods, and other structures fabricated for nanotechnology; the constituents of heterogeneous materials like alloys, suspensions, and gels; and even transient irregularities that form during natural fluctuations or flow in viscous liquids, polymers, and biological fluids. But generating acoustic waves with such short wavelengths, directing them along or through the material of interest, and then detecting them often present daunting challenges. In recent years, novel methods have been developed through which finely tailored laser pulses may be used to generate and detect acoustic waves with specified wavelengths or frequencies. In some cases, a "comb" of laser light is used to imprint the acoustic wave pattern directly onto the material of interest, just as a real comb that suddenly, gently touches a water surface might generate acoustic waves whose wavelength matches the comb spacing (except that the laser light fringes are only microns apart!). In other situations, a timed sequence of laser pulses is used to launch an acoustic wave into a material, just like sequential taps on the side of an aquarium might send acoustic waves into the water within it (except that the light pulses are only picoseconds, i.e. 10X( -12) seconds, apart!). The acoustic waves are not only generated but also detected optically, so no mechanical contact with the sample is needed. These methods have been used to measure nanometer thicknesses of film layers and lateral dimensions of tiny features, transient evolution of viscoelastic fluctuations that govern polymer processing or biological system responses, and a host of other small structures and their dynamics. In this project, equipment will be developed that will permit optical generation and detection of acoustic waves with essentially all possible wavelengths and frequencies that can propagate within a wide range of materials and structural elements. The equipment will be designed to make these measurements not only possible but robust, such that they can be made by high school students in an outreach lab as well as by Ph.D. science and engineering students. In this manner, a new window into microscale and nanoscale structure and behavior will be made widely available.
将开发仪器,以允许光学产生和时间分辨测量在大多数材料中传播的几乎所有波长的相干声波。这一非凡的范围将允许在相同的长度尺度范围内对结构无序进行桌面实验研究,从近1毫米(即明显宏观的)到短至10纳米。它还将提供直接的实验访问动态变化的结构,发生在一个类似的宽范围的时间尺度,从快于1皮秒到许多微秒,给定的声学频率范围约为10兆赫至500千兆赫,将获得访问。这种独特的材料研究能力将用于复杂液体,无定形固体和部分无序晶体的基础研究,其关键特性由这些长度和时间尺度上的结构变化介导。该仪器还将用于表征先进的结构,包括薄膜和多层组件的兴趣,在微电子和许多其他应用。该仪器将提供在体材料和薄膜材料中跨越大部分布里渊区的相干窄带声学声子。 波长为米或毫米的声波通常用于探测类似大小的结构,例如地幔内的特征,干墙后面的2 × 4梁,或子宫内的手指和脚趾(及其运动)。超声成像和探测的相同原理也可以应用于更小的长度尺度,并且有大量的微米和纳米尺寸的结构需要表征。这些包括微电子器件中的多层薄膜;纳米球,纳米棒和其他为纳米技术制造的结构;异质材料的成分,如合金,悬浮液和凝胶;甚至在粘性液体,聚合物和生物流体的自然波动或流动过程中形成的瞬态不规则性。但是,产生波长如此短的声波,引导它们沿着或穿过感兴趣的材料,然后检测它们往往是令人生畏的挑战。近年来,已经开发了新的方法,通过这些方法,可以使用精细定制的激光脉冲来产生和检测具有特定波长或频率的声波。在某些情况下,使用激光的“梳”将声波图案直接压印到感兴趣的材料上,就像突然轻轻接触水面的真实的梳可能产生波长与梳间距匹配的声波一样(除了激光条纹仅相隔几微米!)。在其他情况下,激光脉冲的定时序列用于将声波发射到材料中,就像水族馆侧面的连续水龙头可能会将声波发送到其中的水中(除了光脉冲仅为皮秒,即10 X(-12)秒)。声波不仅可以产生,而且可以通过光学方式检测,因此不需要与样品进行机械接触。这些方法已被用于测量纳米厚度的膜层和横向尺寸的微小功能,粘弹性波动的瞬态演变,管理聚合物加工或生物系统的响应,以及其他小结构和它们的动态主机。在这个项目中,将开发设备,允许光学产生和检测声波,基本上所有可能的波长和频率,可以在广泛的材料和结构元件内传播。这些设备的设计不仅使这些测量成为可能,而且还很可靠,因此高中生可以在外展实验室进行测量,博士也可以进行测量。理工科学生。通过这种方式,一个新的窗口进入微米级和纳米级的结构和行为将被广泛使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keith Nelson其他文献

Engineered nucleocytosolic vehicles for loading of programmable editors
用于装载可编程编辑器的工程化核质转运载体
  • DOI:
    10.1016/j.cell.2025.03.015
  • 发表时间:
    2025-05-15
  • 期刊:
  • 影响因子:
    42.500
  • 作者:
    Julian Geilenkeuser;Niklas Armbrust;Emily Steinmaßl;Samuel W. Du;Sebastian Schmidt;Eva Maria Hildegard Binder;Yuchun Li;Niklas Wilhelm Warsing;Stephanie Victoria Wendel;Florian von der Linde;Elisa Marie Schiele;Xiya Niu;Luisa Stroppel;Oleksandr Berezin;Tobias Heinrich Santl;Tanja Orschmann;Keith Nelson;Christoph Gruber;Grazyna Palczewska;Carolline Rodrigues Menezes;Dong-Jiunn Jeffery Truong
  • 通讯作者:
    Dong-Jiunn Jeffery Truong
High-power laser beam shaping using a metasurface for shock excitation and focusing at the microscale.
使用超表面进行高功率激光束整形,以进行微尺度的冲击激发和聚焦。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Y. Kai;Jet Lem;M. Ossiander;M. Meretska;V. Sokurenko;S. Kooi;F. Capasso;Keith Nelson;T. Pezeril
  • 通讯作者:
    T. Pezeril
After-effects of courtship in the male three-spined stickleback
International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Minipig
国际命名和诊断标准协调 (INHAND):小型猪的非增殖性和增殖性病变
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Skydsgaard;Z. Dincer;W. Haschek;K. Helke;Binod Jacob;B. Jacobsen;G. Jeppesen;A. Kato;H. Kawaguchi;S. McKeag;Keith Nelson;S. Rittinghausen;D. Schaudien;V. Vemireddi;Z. Wojcinski
  • 通讯作者:
    Z. Wojcinski
The development and validation of methods for evaluating the immune system in preweaning piglets
  • DOI:
    10.1016/j.fct.2015.08.027
  • 发表时间:
    2015-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Brandon M. Zeigler;Mark Cameron;Keith Nelson;Kristi Bailey;Myra L. Weiner;Brinda Mahadevan;Bjorn Thorsrud
  • 通讯作者:
    Bjorn Thorsrud

Keith Nelson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keith Nelson', 18)}}的其他基金

MRI: Development of a broadband terahertz electron paramagnetic resonance spectrometer
MRI:宽带太赫兹电子顺磁共振波谱仪的研制
  • 批准号:
    1828570
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Coherent Spectroscopy and Coherent Control of Molecules and Materials
分子和材料的相干光谱和相干控制
  • 批准号:
    1665383
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Coherent spectroscopy and coherent control of collective modes through shaped optical fields
通过成形光场进行相干光谱和集体模式的相干控制
  • 批准号:
    1111557
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Condensed Matter Coherent Spectroscopy and Control
凝聚态相干光谱与控制
  • 批准号:
    0616939
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Optical Spectroscopy and Control of Complex Materials
复杂材料的光谱学和控制
  • 批准号:
    0212375
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Time Resolved Spectroscopy of Complex Materials
复杂材料的时间分辨光谱
  • 批准号:
    9710140
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Time-resolved Spectroscopy of Anharmonic Systems
非简谐系统的时间分辨光谱
  • 批准号:
    9713388
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
U.S.-Japan Cooperative Research: Study of Phase Transition Dynamics by Coherent Phonon Excitation
美日合作研究:相干声子激发研究相变动力学
  • 批准号:
    9418058
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Time-Resolved Spectroscopy of Bulk and Thin Film Structure and Dynamics
体膜和薄膜结构与动力学的时间分辨光谱
  • 批准号:
    9317198
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Multiple-Pulse, Single-Shot Femtosecond Spectroscopy of Condensed Phases
凝聚相的多脉冲、单次飞秒光谱
  • 批准号:
    9404548
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Acoustic-anatomic modeling and development of a patient-specific wearable therapeutic ultrasound device for peripheral arterial disease
针对外周动脉疾病的患者专用可穿戴超声治疗设备的声学解剖建模和开发
  • 批准号:
    10603253
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Towards more inclusive acoustic environments: Development of a soundscape improvement scheme for people with hearing impairments
打造更具包容性的声学环境:为听力障碍人士制定声景改善计划
  • 批准号:
    23K13452
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a Novel Acoustic Based State-of-Charge Sensor (SOC) for Lithium-Ion Batteries
开发用于锂离子电池的新型声学充电状态传感器 (SOC)
  • 批准号:
    BB/X003264/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Development of Iterative Interference Cancellation for MIMO-OFDM Underwater Acoustic Communications
MIMO-OFDM 水声通信迭代干扰消除的发展
  • 批准号:
    23K03850
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dramatic improvement in performance of attachments for ultrasonic homogenizers: Development of Acoustic Jet Booster
超声波均质机附件性能的显着改进:开发声波喷射助推器
  • 批准号:
    23K17734
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Mechanical player and acoustic modeling development
机械演奏者和声学建模开发
  • 批准号:
    573653-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Development of an Acoustic Implant Protection System to Improve Performance and Longevity of Neural Interfaces
开发声学植入保护系统以提高神经接口的性能和寿命
  • 批准号:
    10552838
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Development of high spatial-density long-term earthquake observation system using seafloor cable with distributed acoustic sensing
利用海底电缆分布式声学传感开发高空间密度长期地震观测系统
  • 批准号:
    22K03773
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of GNSS-Acoustic Surveying for Shallow Water
浅水 GNSS 声学测量的发展
  • 批准号:
    2216876
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of low-damping piezoelectric material suitable for acoustic wave devices for next-generation communication 6G
开发适用于下一代通信6G声波器件的低阻尼压电材料
  • 批准号:
    22K18786
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了