Irregular Firing in Dopaminergic Neurons and Related Problems

多巴胺能神经元的不规则放电及相关问题

基本信息

  • 批准号:
    0417624
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

Understanding mechanisms for generating different firing patterns in neurons and transitions between them is fundamental for understanding how the nervous system processes information. After a classical series of papers by Hodgkin and Huxley, nonlinear differential equations became the main framework for modeling electrical activity in neural cells. Today the language and techniques of the applied dynamical systems theory are an indispensable part of understanding computational biology. One of the most important concepts of the dynamical systems theory is that of stability. Historically, the development of the theory of DS was motivated by physical problems, in particular, by problems in mechanics and electronics. In this context, it was natural to study stable solutions (i.e., those that persist under small perturbations), because such solutions are expected to be physically observable. On the system level, this led to study of structurally stable systems, i.e. systems whose solutions preserve their qualitative properties under small variations of parameters. A phenomenon of loss of structural stability is called a bifurcation. From a physical point of view, systems near a bifurcation are rare. The situation is different in modeling biological systems. A distinctive feature of biological models is that they are often close to a bifurcation. In particular, many known models of neural cells reside near a bifurcation. The proximity to a bifurcation creates a source of variability in neuronal models and has a significant impact on the firing patterns that they produce. Near a bifurcation systems acquire greater flexibility in generating dynamical patterns varying in form and frequency. Transient changes in the frequency of oscillations in certain cells are known to affect the rates of neurotransmitter release and hormone secretion, as well as other important physiological and cognitive processes. Therefore, understanding the mechanisms for control and variability of different modes of firing is essential for determining how neural cells function. The goal of the present research is to investigate the implications of the proximity to a bifurcation in the models of Hodgkin-Huxley type with and without noise. For this, the PI uses the techniques of the theory of nonlinear differential equations and the theory of random processes. The theory to be developed in the course of this research will be applied to study the mechanisms for generating firing patterns in concrete biophysical systems. The latter include (but are not limited to) dopaminergic neurons in the mammalian midbrain, pancreatic beta-cells, and pyramidal cells in agranular neocortex. The broader scientific impacts of this research are twofold: first, it enhances understanding of complex biological phenomena through the use of advanced mathematical techniques; second, it identifies new mathematical problems motivated by biology. The results of the present project are expected to generate interest in a broad community of researchers working in nonlinear science and to stimulate new research in nonlinear dynamics. This research reflects the goal of the Department of Mathematics in the PI's home institution to develop stronger links to the new Drexel College of Medicine. The PI will train a graduate student and engage him/her into research relevant to this project. Based in part on the results of this research, the PI will develop and teach a course 'Computational Neuroscience' at Drexel University. Appropriate problems drawn from this research will be integrated in the courses on differential equations, which the PI teaches for graduate and undergraduate students at Drexel University.
理解神经元中产生不同放电模式的机制以及它们之间的转换是理解神经系统如何处理信息的基础。在霍奇金和赫胥黎的一系列经典论文之后,非线性微分方程成为神经细胞电活动建模的主要框架。今天,应用动力系统理论的语言和技术是理解计算生物学不可或缺的一部分。 动力系统理论中最重要的概念之一是稳定性。从历史上看,DS理论的发展是由物理问题,特别是力学和电子学问题推动的。在这种情况下,研究稳定的解决方案是很自然的(即,那些在小扰动下持续存在的解),因为这样的解预期是物理上可观察的。在系统层面上,这导致了对结构稳定系统的研究,即在参数的微小变化下,其解保持其定性性质的系统。 结构失稳的现象称为分叉。从物理学的角度来看,系统在分叉附近是罕见的。在模拟生物系统时,情况就不同了。 生物模型的一个显著特征是它们通常接近于分叉。特别地,许多已知的神经细胞模型位于分叉附近。接近分叉产生了神经元模型的可变性来源,并对它们产生的放电模式产生重大影响。在分叉附近,系统在产生形式和频率变化的动力学模式方面获得更大的灵活性。已知某些细胞中振荡频率的瞬时变化会影响神经递质释放和激素分泌的速率,以及其他重要的生理和认知过程。因此,了解不同放电模式的控制和可变性机制对于确定神经细胞的功能至关重要。本研究的目的是调查的影响,接近分歧的霍奇金-赫胥黎型模型有和没有噪音。为此,PI使用非线性微分方程理论和随机过程理论的技术。在这项研究的过程中发展的理论将被应用于研究在具体的生物物理系统中产生放电模式的机制。后者包括(但不限于)哺乳动物中脑中的多巴胺能神经元、胰腺β细胞和无颗粒新皮质中的锥体细胞。这项研究的更广泛的科学影响是双重的:首先,它通过使用先进的数学技术增强了对复杂生物现象的理解;其次,它确定了由生物学激发的新数学问题。本项目的结果预计将引起广大非线性科学研究人员的兴趣,并刺激非线性动力学的新研究。这项研究反映了PI的家乡机构数学系的目标,以发展更强大的联系,以新的德雷克塞尔医学院。PI将培训一名研究生,并让他/她参与与本项目相关的研究。部分基于这项研究的结果,PI将在德雷克塞尔大学开发和教授“计算神经科学”课程。从这项研究中得出的适当问题将被整合到微分方程课程中,PI为德雷克塞尔大学的研究生和本科生教授微分方程课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Georgi Medvedev其他文献

Noise-induced bursting in stochastic models of single cells and electrically coupled ensembles
  • DOI:
    10.1186/1471-2202-9-s1-o5
  • 发表时间:
    2008-07-11
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Georgi Medvedev
  • 通讯作者:
    Georgi Medvedev

Georgi Medvedev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Georgi Medvedev', 18)}}的其他基金

Large Deviations and Metastability in Dynamical Networks
动态网络中的大偏差和亚稳态
  • 批准号:
    2009233
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mean Field Analysis of Dynamical Networks
动态网络的平均场分析
  • 批准号:
    1715161
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dynamics of Large Networks
大型网络的动态
  • 批准号:
    1412066
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical analysis of synchronization in complex networks
复杂网络中同步的数学分析
  • 批准号:
    1109367
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Astrocytic mechanism for regulating dopaminergic burst firing
星形胶质细胞调节多巴胺能爆发放电的机制
  • 批准号:
    9269461
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Astrocytic mechanism for regulating dopaminergic burst firing
星形胶质细胞调节多巴胺能爆发放电的机制
  • 批准号:
    9126840
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Contribution of L-type Ca2+ channel subtypes to burst firing of dopaminergic cells in the mouse ventral tegmental area
L 型 Ca2 通道亚型对小鼠腹侧被盖区多巴胺能细胞爆发放电的贡献
  • 批准号:
    261384-2008
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Contribution of L-type Ca2+ channel subtypes to burst firing of dopaminergic cells in the mouse ventral tegmental area
L 型 Ca2 通道亚型对小鼠腹侧被盖区多巴胺能细胞爆发放电的贡献
  • 批准号:
    261384-2008
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Contribution of L-type Ca2+ channel subtypes to burst firing of dopaminergic cells in the mouse ventral tegmental area
L 型 Ca2 通道亚型对小鼠腹侧被盖区多巴胺能细胞爆发放电的贡献
  • 批准号:
    261384-2008
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Contribution of L-type Ca2+ channel subtypes to burst firing of dopaminergic cells in the mouse ventral tegmental area
L 型 Ca2 通道亚型对小鼠腹侧被盖区多巴胺能细胞爆发放电的贡献
  • 批准号:
    261384-2008
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Contribution of L-type Ca2+ channel subtypes to burst firing of dopaminergic cells in the mouse ventral tegmental area
L 型 Ca2 通道亚型对小鼠腹侧被盖区多巴胺能细胞爆发放电的贡献
  • 批准号:
    261384-2008
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Contribution of L-type Ca2+ channel subtypes to burst firing of dopaminergic cells in the mouse ventral tegmental area
L 型 Ca2 通道亚型对小鼠腹侧被盖区多巴胺能细胞爆发放电的贡献
  • 批准号:
    261384-2008
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Contribution of L-type Ca2+ channel subtypes to burst firing of dopaminergic cells in the mouse ventral tegmental area
L 型 Ca2 通道亚型对小鼠腹侧被盖区多巴胺能细胞爆发放电的贡献
  • 批准号:
    261384-2008
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Synaptic integration and firing patterns of the midbrain dopaminergic neuron
中脑多巴胺能神经元的突触整合和放电模式
  • 批准号:
    0817717
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了