Mean Field Analysis of Dynamical Networks
动态网络的平均场分析
基本信息
- 批准号:1715161
- 负责人:
- 金额:$ 19.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A large number of important structures and phenomena in nature, society, and technology can be modeled by networks of interacting dynamical systems. Examples include power and communication networks in technology, neuronal and genetic networks in biology, as well as social and economic networks, to name a few. Understanding behavior of these systems requires advanced mathematical techniques for studying dynamics in complex networks. This project will use mathematical modeling, analysis, and numerical simulations to elucidate the link between the structure and dynamics in complex networks. In particular, the investigator aims to find new ways for describing network organization in dynamical models and study critical phenomena, such as the onset of synchronization and emergence and bifurcations of spatial patterns in networks of coupled oscillators. The results of this research and the tools that will be developed in its course, will enhance our ability to understand, predict, and control the behavior of real world networks. The mean field approximation is one of the most effective analytical tools available for studying large ensembles of interacting dynamical systems. Originally developed for problems in statistical physics, this method has been extremely successful for studying collective dynamics in coupled oscillator models of various physical, chemical, biological, and technological systems. The analysis of synchronization in the Kuramoto model of coupled phase oscillators and the bifurcation analysis of chimera states rely on the mean field equation formally derived in the limit, as the number of oscillators goes to infinity. Despite its spectacular success in applications, the mathematical basis of the mean field approximation of coupled dynamical systems on networks is not well understood. In this research, the aim is to derive and rigorously justify the mean field description of dynamics of coupled systems on convergent families of graphs. This advances the mean field theory for coupled systems in two ways: first, by extending the main results of this theory to a large class of random networks, including those with small-world and scale free connectivity, and, second, by relaxing the key regularity assumptions, blocking the application of this theory to real world networks. The new theoretical results are used to study the onset of synchronization in systems of coupled phase oscillators with spatially structured interactions, stable dynamical regimes in the Kuramoto model on power law graphs, and pattern formation in neural fields in random media.
自然界、社会和技术中的大量重要结构和现象可以通过相互作用的动力系统网络来建模。例子包括技术中的电力和通信网络,生物学中的神经元和遗传网络,以及社会和经济网络。理解这些系统的行为需要先进的数学技术来研究复杂网络中的动力学。该项目将使用数学建模,分析和数值模拟来阐明复杂网络中结构和动力学之间的联系。特别是,研究者的目的是找到新的方法来描述网络组织的动力学模型和研究关键现象,如同步和出现和分叉的空间模式在网络中的耦合振荡器的发病。这项研究的结果和将在其过程中开发的工具,将提高我们理解,预测和控制真实的世界网络行为的能力。平均场近似是研究相互作用动力系统大系综最有效的分析工具之一。这种方法最初是为了解决统计物理学中的问题而开发的,在研究各种物理、化学、生物和技术系统的耦合振荡器模型中的集体动力学方面非常成功。耦合相位振子的仓本模型中的同步分析和嵌合态的分叉分析依赖于在极限中正式导出的平均场方程,因为振子的数量趋于无穷大。尽管它在应用上取得了巨大的成功,但网络上耦合动力系统的平均场近似的数学基础还没有得到很好的理解,在这项研究中,目的是推导并严格证明收敛图族上耦合动力系统的平均场描述。这在两个方面推进了耦合系统的平均场理论:第一,通过将该理论的主要结果扩展到一大类随机网络,包括那些具有小世界和无标度连通性的网络;第二,通过放松关键的正则性假设,阻止该理论应用于真实的世界网络。新的理论结果被用来研究在系统的耦合相位振荡器与空间结构的相互作用,稳定的动力学制度的仓本模型的幂律图,和图案的形成在随机介质中的神经领域的同步。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bifurcations in the Kuramoto model on graphs
图上 Kuramoto 模型的分叉
- DOI:10.1063/1.5039609
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Chiba, Hayato;Medvedev, Georgi S.;Mizuhara, Matthew S.
- 通讯作者:Mizuhara, Matthew S.
The Kuramoto Model on Power Law Graphs: Synchronization and Contrast States
幂律图的仓本模型:同步和对比状态
- DOI:10.1007/s00332-018-9489-3
- 发表时间:2018
- 期刊:
- 影响因子:3
- 作者:Medvedev, Georgi S.;Tang, Xuezhi
- 通讯作者:Tang, Xuezhi
The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations
仓本模型在图Ⅷ上的平均场分析。
- DOI:10.3934/dcds.2019157
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Chiba, Hayato;S. Medvedev, Georgi
- 通讯作者:S. Medvedev, Georgi
The continuum limit of the Kuramoto model on sparse random graphs
稀疏随机图上Kuramoto模型的连续统极限
- DOI:10.4310/cms.2019.v17.n4.a1
- 发表时间:2019
- 期刊:
- 影响因子:1
- 作者:Medvedev, Georgi S.
- 通讯作者:Medvedev, Georgi S.
The Mean Field Equation for the Kuramoto Model on Graph Sequences with Non-Lipschitz Limit
非Lipschitz极限图序列上Kuramoto模型的平均场方程
- DOI:10.1137/17m1134007
- 发表时间:2018
- 期刊:
- 影响因子:2
- 作者:Kaliuzhnyi-Verbovetskyi, Dmitry;Medvedev, Georgi S.
- 通讯作者:Medvedev, Georgi S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georgi Medvedev其他文献
Noise-induced bursting in stochastic models of single cells and electrically coupled ensembles
- DOI:
10.1186/1471-2202-9-s1-o5 - 发表时间:
2008-07-11 - 期刊:
- 影响因子:2.300
- 作者:
Georgi Medvedev - 通讯作者:
Georgi Medvedev
Georgi Medvedev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Georgi Medvedev', 18)}}的其他基金
Large Deviations and Metastability in Dynamical Networks
动态网络中的大偏差和亚稳态
- 批准号:
2009233 - 财政年份:2020
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
Mathematical analysis of synchronization in complex networks
复杂网络中同步的数学分析
- 批准号:
1109367 - 财政年份:2011
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
Irregular Firing in Dopaminergic Neurons and Related Problems
多巴胺能神经元的不规则放电及相关问题
- 批准号:
0417624 - 财政年份:2004
- 资助金额:
$ 19.88万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
- 批准号:21506066
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Asymptotic analysis on PDEs appearing in mean field games, crystal growth and anomalous diffusion
平均场博弈、晶体生长和反常扩散中偏微分方程的渐近分析
- 批准号:
22K03382 - 财政年份:2022
- 资助金额:
$ 19.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis on the linear response for solutions of mean field equations
平均场方程解线性响应的数学分析
- 批准号:
20K03675 - 财政年份:2020
- 资助金额:
$ 19.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Constrained Mean Field Games: Analysis and Algorithms
约束平均场博弈:分析和算法
- 批准号:
423610162 - 财政年份:2019
- 资助金额:
$ 19.88万 - 项目类别:
Priority Programmes
Mean Field Analysis of Large Networks of Neurons with Synaptic Plasticity
具有突触可塑性的大型神经元网络的平均场分析
- 批准号:
487777-2016 - 财政年份:2018
- 资助金额:
$ 19.88万 - 项目类别:
Postdoctoral Fellowships
Mean Field Analysis of Large Networks of Neurons with Synaptic Plasticity
具有突触可塑性的大型神经元网络的平均场分析
- 批准号:
487777-2016 - 财政年份:2017
- 资助金额:
$ 19.88万 - 项目类别:
Postdoctoral Fellowships
Mean Field Analysis of Large Networks of Neurons with Synaptic Plasticity
具有突触可塑性的大型神经元网络的平均场分析
- 批准号:
487777-2016 - 财政年份:2016
- 资助金额:
$ 19.88万 - 项目类别:
Postdoctoral Fellowships
Tools for the analysis, design and decentralized control of complex systems: from decomposition-aggregations to mean field control
用于复杂系统分析、设计和分散控制的工具:从分解聚合到平均场控制
- 批准号:
6820-2011 - 财政年份:2015
- 资助金额:
$ 19.88万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation Analysis of Large Networks of Discontinuous Pulse Coupled Oscillators Through a Mean-Field Reduction
通过平均场缩减对大型不连续脉冲耦合振荡器网络进行分岔分析
- 批准号:
442080-2013 - 财政年份:2015
- 资助金额:
$ 19.88万 - 项目类别:
Postgraduate Scholarships - Doctoral
Tools for the analysis, design and decentralized control of complex systems: from decomposition-aggregations to mean field control
用于复杂系统分析、设计和分散控制的工具:从分解聚合到平均场控制
- 批准号:
6820-2011 - 财政年份:2014
- 资助金额:
$ 19.88万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation Analysis of Large Networks of Discontinuous Pulse Coupled Oscillators Through a Mean-Field Reduction
通过平均场缩减对大型不连续脉冲耦合振荡器网络进行分岔分析
- 批准号:
442080-2013 - 财政年份:2014
- 资助金额:
$ 19.88万 - 项目类别:
Postgraduate Scholarships - Doctoral