NER: Phonon Enhanced Near Field Infrared Lithography

NER:声子增强近场红外光刻

基本信息

  • 批准号:
    0417838
  • 负责人:
  • 金额:
    $ 0.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-01-01 至 2005-06-30
  • 项目状态:
    已结题

项目摘要

The objective of this project is to carry out experimental and theoretical efforts on critical issues related to the development of a "perfect" lens: the lens whose resolution is not diffraction limited. Specifically, we will demonstrate a new approach to nanolithography: Phonon Enhanced Near-Field Infrared Lithography(PENFIL). While the resolution of standard techniques of optical lithography and material patterning is limited by the wavelength of radiation responsible for the lithographic process, our approach is not diffraction limited due to its near-field nature. Specifically, the goals are: (i) To demonstrate the property of an ultra-thin (sub-micron) film of SiC to focus the electromagnetic radiation produced by a tunable CO2 laser to a spotsize smaller than 100 nm; (ii) To investigate the critical issues related to manufacturing of an ultra-thin "perfect" SiC lens: optimal film deposition technique, substrate material, imaging wavelength, film thickness, and operation temperature; (iii) To investigate the relative advantages and disadvantages of two types of "perfect" lenses: free-standing (vacuum-SiC-vacuum) lens and the attached substrate-SiC-substrate) lens; and (iv) To develop a roadmap towards utilizing perfect lensing as a practical tool for nanolithography and electromagnetic sensing of nanometer-sized biological and chemical objects.The main intellectual significance of the proposed project is the experimental demonstration of the perfect lensing in the infrared frequency range, which is likely to lead to significant advances in several areas of nanotechnology: nanoscale manufacturing, nanoimaging, and nanoscale biology. For example, innovative approaches to nanofabrication involving nanolithography using infrared light could be envisioned. The availability of high-power short pulse sources in the infrared frequency range make such prospects very appealing. Potential broader impacts include the imaging and manipulation of individual cells and sections of long biological molecules (such as proteins or DNA) using laser light at the frequencies most appropriate for those biological objects. Individual fingerprinting of various bacterial spores of sub-micron size by exciting their vibrational modes with infrared radiation can also be envisioned. In addition, this research will expose students to a broad range of areas from material growth to lens fabrication to optical testing, involving several universities and Brookhaven National Laboratory.
该项目的目标是对与研制“完美”透镜有关的关键问题进行实验和理论努力:分辨率不受衍射限制的透镜。具体地说,我们将展示一种新的纳米光刻方法:声子增强近场红外光刻(PENFIL)。虽然光学光刻和材料图案化的标准技术的分辨率受到光刻过程中辐射波长的限制,但由于其近场性质,我们的方法不受衍射限制。具体地说,目的是:(I)展示超薄(亚微米)碳化硅薄膜的特性,将可调谐二氧化碳激光器产生的电磁辐射聚焦到小于100 nm的光斑尺寸;(Ii)研究与制造超薄“完美”碳化硅透镜有关的关键问题:最佳的薄膜沉积技术、衬底材料、成像波长、薄膜厚度和操作温度;(Iii)研究两种“完美”透镜:独立(真空-碳化硅-真空)透镜和附着衬底-碳化硅-衬底的透镜的相对优缺点;以及(Iv)制定一个路线图,将完美透镜作为一种实用工具,用于纳米尺寸生物和化学对象的纳米光刻和电磁传感。拟议项目的主要智力意义是在红外频率范围内的完美透镜的实验演示,这可能导致纳米技术的几个领域的重大进展:纳米制造、纳米成像和纳米生物学。例如,可以设想使用红外光进行纳米光刻的创新方法。红外频率范围内的高功率短脉冲源的可获得性使这种前景非常诱人。潜在的更广泛的影响包括以最适合这些生物对象的频率使用激光对单个细胞和长生物分子(如蛋白质或DNA)的部分进行成像和操作。还可以通过红外辐射激发细菌孢子的振动模式,对各种亚微米大小的细菌孢子进行个人指纹识别。此外,这项研究将使学生接触到从材料生长到透镜制造再到光学测试的广泛领域,涉及几所大学和布鲁克海文国家实验室。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gennady Shvets其他文献

Gamma-rays going cheap
伽马射线变得便宜了
  • DOI:
    10.1038/nphys2110
  • 发表时间:
    2011-09-18
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Gennady Shvets
  • 通讯作者:
    Gennady Shvets
Current-driven metamaterial homogenization
  • DOI:
    10.1016/j.physb.2010.01.006
  • 发表时间:
    2010-07-15
  • 期刊:
  • 影响因子:
  • 作者:
    Chris Fietz;Gennady Shvets
  • 通讯作者:
    Gennady Shvets
How to guide light around sharp corners: Topologically protected surface waves without magnetic field
如何引导光绕过尖角:无磁场的拓扑保护表面波
Novel techniques of laser acceleration: from structures to plasmas
激光加速新技术:从结构到等离子体
Topological Directional Coupler
拓扑定向耦合器
  • DOI:
    10.1002/lpor.202301313
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yandong Li;Minwoo Jung;Yang Yu;Yuchen Han;Baile Zhang;Gennady Shvets
  • 通讯作者:
    Gennady Shvets

Gennady Shvets的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gennady Shvets', 18)}}的其他基金

Interaction of Ultra-Intense Laser Pulses with Structured Targets in the Multi-Petawatt Regime
超强激光脉冲与多拍瓦级结构目标的相互作用
  • 批准号:
    2109087
  • 财政年份:
    2021
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Standard Grant
OP: Fundamental Properties and Applications of Plasmonic Metasurfaces Integrated with 2D Materials
OP:与 2D 材料集成的等离激元超表面的基本特性和应用
  • 批准号:
    1741788
  • 财政年份:
    2017
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Standard Grant
OP: Fundamental Properties and Applications of Plasmonic Metasurfaces Integrated with 2D Materials
OP:与 2D 材料集成的等离激元超表面的基本特性和应用
  • 批准号:
    1611379
  • 财政年份:
    2016
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Standard Grant
Development of Ultra-Dense Plasmonic Sensors Arrays Using Epitaxial Periodically-Perforated Silver Films
使用外延周期性穿孔银膜开发超密集等离子体传感器阵列
  • 批准号:
    0928664
  • 财政年份:
    2009
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Standard Grant
NER: Phonon Enhanced Near Field Infrared Lithography
NER:声子增强近场红外光刻
  • 批准号:
    0304660
  • 财政年份:
    2003
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Standard Grant

相似海外基金

The elasticity of male fertility by means of phonon microscopy
通过声子显微镜观察男性生育能力的弹性
  • 批准号:
    EP/Y002857/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Research Grant
Enhancement of interfacial thermal transport through evanescent electric field mediated acoustic phonon transmission for efficient cooling of high power Gallium Nitride devices
通过瞬逝电场介导的声声子传输增强界面热传输,以实现高功率氮化镓器件的高效冷却
  • 批准号:
    2336038
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Standard Grant
EAGER: In-situ spectral phonon recycling in LED for improved thermal, power and performance efficiency
EAGER:LED 中的原位光谱声子回收可提高热、功率和性能效率
  • 批准号:
    2407260
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Standard Grant
Quantized Phonon Conductance of One-dimensional Systems
一维系统的量子化声子电导
  • 批准号:
    2231376
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Standard Grant
Elements: FourPhonon: A Computational Tool for Higher-Order Phonon Anharmonicity and Thermal Properties
元素:FourPhonon:高阶声子非谐性和热性质的计算工具
  • 批准号:
    2311848
  • 财政年份:
    2023
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Standard Grant
Controlling Electron, Magnon, and Phonon States in Quasi-2D Antiferromagnetic Semiconductors for Enabling Novel Device Functionalities
控制准二维反铁磁半导体中的电子、磁子和声子态以实现新颖的器件功能
  • 批准号:
    2205973
  • 财政年份:
    2023
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Continuing Grant
Elucidation of Mechanism of Phonon Thermal Conductivity Reduction by Orbital Fluctuation for Development of Novel Thermal Functional Materials
阐明轨道涨落降低声子导热率的机制,以开发新型热功能材料
  • 批准号:
    23KJ0893
  • 财政年份:
    2023
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
On-chip bio-opto-mechanics: Controlling phonon-assisted processes in single biomolecules
片上生物光力学:控制单个生物分子中的声子辅助过程
  • 批准号:
    EP/V049011/2
  • 财政年份:
    2023
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Research Grant
Strain tuning phonon topology in flexible organic crystals
柔性有机晶体中的应变调谐声子拓扑
  • 批准号:
    2882249
  • 财政年份:
    2023
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Studentship
Phonon and electron system with different dimensions formed by silicene manipulation and development of high performance thermoelectric thin film device
硅烯操控形成不同维度的声子和电子体系及高性能热电薄膜器件的开发
  • 批准号:
    23H00258
  • 财政年份:
    2023
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了