NEESR-II Large-scale testing and micromechanical simulation of ultra-low-cycle fatigue cracking in steel structures
NEESR-II 钢结构超低周疲劳裂纹大规模试验与微观力学模拟
基本信息
- 批准号:0421492
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-11-15 至 2009-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cyclic inelastic deformations are the primary mode of seismic energy dissipation in steel structures. During earthquakes, beam-column moment connections undergo a phenomena called Ultra-Low Cycle Fatigue (ULCF), which is characterized by very few (10-20) large strain cycles. ULCF is quite distinct from low cycle fatigue, which has been more widely studied but does not address the conditions prevalent in seismic design. Relatively little attention has been given to characterizing the fundamental failure mechanisms associated with ULCF, due to the lack of suitable micro-scale models to simulate ULCF and the computational requirements necessary implement the models for studying large structural components. Existing research on ULCF of steel structures in earthquakes relies almost exclusively on semi-empirical methods, which cannot be transferred to varied structural configurations. Moreover, most of the existing empirical research is based on quasi-static testing, which does not account for earthquake loading rate effects. Such knowledge gaps represent serious issues for seismic hazard mitigation. The proposed research aims to (1) identify and quantify the underlying failure mechanisms of earthquake-induced ULCF, (2) develop and implement models to simulate ULCF in steel structures (3) conduct large scale subassembly tests at earthquake loading rates to verify and demonstrate the models (4) apply the ULCF models to develop practical guidelines and recommendations for earthquake resistant design. A recent study by the PI and his collaborator at Stanford succeeded in developing some of the first micromechanical models for predicting earthquake-induced ULCF crack initiation in steel structures. Based on these initial advances, the proposed study will integrate micromechanics concepts with advanced simulation techniques and parallel-computing to realistically simulate fundamental fatigue-fracture processes in steel structures. The first phase of the research will include integrated testing and analyses of welded components to calibrate the material properties in the micromechanical models. The second phase will use the fast hybrid testing facility at NEES Colorado to test full-scale welded steel connections results of which will be used to validate micromechanical simulations for predicting ULCF fractures. The third phase will use the micromechanical model-based simulation framework to address unresolved practical problems of interest to the design and construction industry, e.g. the initiation and propagation of ductile fractures in welded steel construction. Intellectual Merit of the Proposed Research: This research will develop powerful tools to model crack initiation and propagation at a very fundamental level in structural steel components under earthquake loading effects. The research will substantially advance the state of knowledge in fracture/fatigue mechanics and effectively demonstrate the power of micro-scale modeling for addressing important earthquake engineering problems. This will have both a positive effect on simulation practices in general and the migration towards a more extensive model-based simulation environment. Consistent design recommendations based on the simulations will address important detailing issues and mitigate earthquake hazard. The research will utilize the fast hybrid testing facility at NEES-Colorado, and the research team is committed to free sharing of data, simulation models, and other information through the NEESgrid and publication in refereed journals. Broader Impact of Proposed Research: This research will have a significant impact on the state of the art in earthquake fatigue mechanics, model based simulation, and design guidelines to protect against ULCF in earthquakes. Involving expertise from structural engineering, materials and computational science, this research will promote interdisciplinary technology transfer and collaboration between the between the two participating schools and the NEES site at CU-Boulder. An educational impact of this study will include the education of two doctoral students, one each at UC Davis and Stanford. Moreover, the PI and the co-PI are both responsible for teaching steel design classes at UC Davis and Stanford, which provide a natural educational opportunity for students to become engaged in the research through the NEES teleparticipation and database facilities. The project team is committed to involving under-represented groups in research and will collaborate with on campus engineering diversity programs to achieve these aims.
循环非弹性变形是钢结构耗能的主要方式。在地震期间,梁柱弯矩连接经历称为超低周疲劳(ULCF)的现象,其特征在于很少(10-20)个大应变循环。 ULCF与低周疲劳截然不同,低周疲劳已得到更广泛的研究,但未解决抗震设计中普遍存在的条件。由于缺乏合适的微尺度模型来模拟ULCF和必要的计算要求来实现用于研究大型结构部件的模型,因此相对较少关注与ULCF相关的基本失效机制的特征。现有的钢结构抗震极限承载力的研究几乎完全依赖于半经验的方法,不能应用于各种结构形式。此外,大多数现有的经验研究是基于准静态测试,这并没有考虑地震加载速率的影响。这种知识差距是减轻地震灾害的严重问题。该研究旨在(1)识别和量化地震引起的ULCF的潜在失效机制,(2)开发和实施模型来模拟钢结构中的ULCF,(3)在地震加载速率下进行大规模子组件测试以验证和演示模型,(4)应用ULCF模型来制定实用的抗震设计指南和建议。PI和他在斯坦福大学的合作者最近的一项研究成功地开发了一些第一批微力学模型,用于预测地震引起的钢结构ULCF裂纹萌生。基于这些初步进展,拟议的研究将结合先进的模拟技术和并行计算的微观力学概念,逼真地模拟钢结构的基本疲劳断裂过程。研究的第一阶段将包括焊接部件的综合测试和分析,以校准微观力学模型中的材料特性。第二阶段将使用NEES科罗拉多的快速混合测试设施来测试全尺寸焊接钢连接,其结果将用于验证预测ULCF断裂的微观力学模拟。第三阶段将使用基于微观力学模型的仿真框架来解决设计和建筑行业感兴趣的未解决的实际问题,例如焊接钢结构中韧性断裂的产生和传播。 拟议研究的智力价值:这项研究将开发强大的工具,在地震荷载作用下的结构钢构件中,在非常基本的水平上模拟裂纹的萌生和扩展。这项研究将大大推进断裂/疲劳力学的知识状态,并有效地展示了解决重要地震工程问题的微尺度建模的力量。 这将对一般的模拟做法和向更广泛的基于模型的模拟环境的迁移产生积极影响。基于模拟的一致设计建议将解决重要的细节问题并减轻地震灾害。该研究将利用NEES-Colorado的快速混合测试设施,研究团队致力于通过NEESgrid免费共享数据,模拟模型和其他信息,并在参考期刊上发表。 拟议研究的更广泛影响:这项研究将对地震疲劳力学、基于模型的模拟和设计指南的最新水平产生重大影响,以防止地震中的ULCF。这项研究涉及结构工程,材料和计算科学的专业知识,将促进两所参与学校和CU-Boulder的NEES网站之间的跨学科技术转让和合作。 这项研究的教育影响将包括两名博士生的教育,加州大学戴维斯分校和斯坦福大学各一名。此外,PI和co-PI都负责在加州大学戴维斯分校和斯坦福大学教授钢结构设计课程,这为学生提供了一个自然的教育机会,通过NEES远程参与和数据库设施参与研究。该项目团队致力于让代表性不足的群体参与研究,并将与校园工程多样性计划合作,以实现这些目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amit Kanvinde其他文献
Estimation of backbone model parameters for simulation of exposed column base plates
用于模拟外露柱底板的骨架模型参数估计
- DOI:
10.1016/j.jcsr.2024.109034 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:4.300
- 作者:
Sergio Villar-Salinas;Amit Kanvinde;Francisco López-Almansa - 通讯作者:
Francisco López-Almansa
Multiscale lattice discrete particle modeling of steel-concrete composite column bases under pull-out and cyclic loading conditions
钢-混凝土组合柱脚在拔出和循环加载条件下的多尺度格子离散粒子建模
- DOI:
10.1016/j.compstruc.2025.107705 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.800
- 作者:
Yingbo Zhu;Ahmad Hassan;Amit Kanvinde;Alessandro Fascetti - 通讯作者:
Alessandro Fascetti
Strength characterization of exposed column base plates subjected to axial force and biaxial bending
- DOI:
10.1016/j.engstruct.2021.112165 - 发表时间:
2021-06-15 - 期刊:
- 影响因子:
- 作者:
Ahmad S. Hassan;Pablo Torres-Rodas;Laura Giulietti;Amit Kanvinde - 通讯作者:
Amit Kanvinde
Evaluation of overstrength-based interaction checks for columns in steel moment frames
基于超强的钢框架柱相互作用检查的评估
- DOI:
10.1016/j.jcsr.2024.109123 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:4.300
- 作者:
Tomasz Falborski;Greta Murtas;Ahmed Elkady;Dimitrios Lignos;Amit Kanvinde - 通讯作者:
Amit Kanvinde
Amit Kanvinde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amit Kanvinde', 18)}}的其他基金
Collaborative Research: Micromechanics-based Framework for Modeling Fracture of Weldments in Structural Steel
合作研究:基于微观力学的结构钢焊件断裂建模框架
- 批准号:
2129445 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Simulation of Interactive Cyclic Local-Global Buckling in Steel Members Using Nonlocal Hybrid Element
使用非局部混合单元模拟钢构件中交互式循环局部-全局屈曲
- 批准号:
1926202 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Simulating Crack Propagation in Steel Structures Under Ultra-Low Cycle Fatigue and Low-Triaxiality Loading from Earthquakes and Other Hazards
合作研究:模拟地震和其他灾害造成的超低周疲劳和低三轴度载荷下钢结构的裂纹扩展
- 批准号:
1634291 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Computational Simulation of Local Damage in Structures
结构局部损伤的计算模拟
- 批准号:
1434300 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
RAPID: Forensic Analysis of Eccentrically Braced Frame Fracture during the February 2011 Christchurch, New Zealand Earthquake
RAPID:2011 年 2 月新西兰基督城地震期间偏心支撑框架断裂的法医分析
- 批准号:
1138634 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Multi-Scale Simulation of Low-Triaxiality Fracture and Ultra Low Cycle Fatigue in Steel Structures
合作研究:钢结构低三轴度断裂和超低周疲劳的多尺度模拟
- 批准号:
0825155 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
药用植物华泽兰中改善II型糖尿病并发抑郁症活性先导化合物的挖掘及其作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
脂肪干细胞外泌体调节Bax/BAK1-caspase-3/caspase8信号轴影响II型肺泡上皮细胞衰老在脓毒症肺损伤中的作用及机制
- 批准号:MS25H010004
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
超长波长NIR-II 区有机探针的开发及在活体检测中的应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
αvβ3整合素靶向有机探针用于NIR-II FL/MRI双模态成像引导的三阴性乳腺癌光热治疗研究
- 批准号:2025JJ81013
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
- 批准号:2025JJ50094
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
1 类新药研发后补助(治疗用生物制品 1 类 MG-K10 人源化单抗注射液、II 期临床试验)
- 批准号:2025JK2095
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
1 类新药研发后补助(治疗用生物制品 1 类MG-ZG122 人源化单抗注射液、II 期临床试验)
- 批准号:2025JK2097
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
黏土矿物结构Fe(II)跨界面驱动氧化铁结合态有机质释放和转化机制
- 批准号:2025JJ50205
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
有序组装型NIR-II荧光探针的构建及疾病辅助诊断应用
- 批准号:2025JJ40014
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
NIR-II荧光内镜辅助胰腺癌术中肿瘤活性评估的可视化研究
- 批准号:2025JJ50653
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
SBIR Phase II: Automated Perception for Robotic Chopsticks Manipulating Small and Large Objects in Constrained Spaces
SBIR 第二阶段:机器人筷子在受限空间中操纵小型和大型物体的自动感知
- 批准号:
2321919 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement
SBIR Phase II: Large-Scale Synthesis of Hollow Metal Nanospheres: Conversion of Batch Synthesis to Continuous Flow
SBIR第二阶段:空心金属纳米球的大规模合成:间歇合成向连续流动的转化
- 批准号:
2127133 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Cooperative Agreement
To study the pathogenesis and its underlying mechanisms of an abnormally large Pol II pool size caused by a defective novel ARMC5-containing POLR2A-specific ubiquitin ligase
研究由含有 ARMC5 的新型 POLR2A 特异性泛素连接酶缺陷引起的异常大的 Pol II 池大小的发病机制及其潜在机制
- 批准号:
450595 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Operating Grants
SBIR Phase II: A Digital Design-Delivery System for the Large-scale Deployment of Mass Timber Building Technologies
SBIR 第二阶段:用于大规模部署大型木结构建筑技术的数字设计交付系统
- 批准号:
2111626 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Cooperative Agreement
SemiSynBio-II: Hybrid Bio-Electronic Microfluidic Memory Arrays for Large Scale Testing and Remote Deployment
SemiSynBio-II:用于大规模测试和远程部署的混合生物电子微流控存储器阵列
- 批准号:
2027045 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
High Luminosity Large Hadron Collider UK Phase-II
英国高光度大型强子对撞机二期
- 批准号:
ST/T001852/1 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grant
SBIR Phase II: Early Detection of Anomalies in Large-Scale Gas Networks
SBIR 第二阶段:大型天然气网络异常的早期检测
- 批准号:
2025906 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Cooperative Agreement
SBIR Phase II: Scalable Linear Ion Beam For Large Area Plasma Processing
SBIR 第二阶段:用于大面积等离子体处理的可扩展线性离子束
- 批准号:
1853254 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase II: Large Arrays for 5G MU-MIMO Wireless Access Operating in mm-wave Frequency Bands
SBIR 第二阶段:在毫米波频段运行的 5G MU-MIMO 无线接入大型阵列
- 批准号:
1927011 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
STTR Phase II: Developing High Carotenoid Orange Corn for Large-scale Commercial Adoption
STTR 第二阶段:开发高类胡萝卜素橙玉米以进行大规模商业应用
- 批准号:
1926952 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant