Collaborative Research: High-Performance Computational Methods for Continuous-Time Markov Processes in Financial Engineering

合作研究:金融工程中连续时间马尔可夫过程的高性能计算方法

基本信息

  • 批准号:
    0422985
  • 负责人:
  • 金额:
    $ 7.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-10-01 至 2008-09-30
  • 项目状态:
    已结题

项目摘要

This grant provides funding for the development of high-performance computational tools for financial engineering. The goal is to develop computational methods to evaluate complex financial products used to manage foreign exchange, interest rate, equity, commodity, energy, and credit risks, manage portfolios of assets, and evaluate financial contracts and equipment leases in manufacturing industries. The methodology is based on the extension to financial engineering of finite element methods used to solve numerically partial differential equations. Partial integro-differential equations arise in Markov jump-diffusion models and associated optimal stopping and stochastic control problems in financial engineering. Finite element methods will be applied to jump-diffusion processes to develop computational tools to be used by practitioners in the financial services industry, as well as researchers in financial engineering, applied probability and operations research. Applications include pricing algorithms for a wide range of financial contracts (equity and foreign exchange options, interest rate derivatives, commodity contracts, and equipment leases in manufacturing), as well as portfolio optimization with transaction costs and trading restrictions. If successful, methodologies developed in this project will help financial institutions, corporate treasuries of manufacturing and service firms, and energy companies accurately value complex financial instruments and efficiently manage financial risks. This project will also have a broader impact on research and application areas that use continuous-time Markov processes, such as heavy traffic limits in queueing theory, inventory control, scheduling, and manufacturing. The results on constructive approximations to the valuation, optimal stopping and stochastic control problems will also help simulation and stochastic optimization research by providing reliable benchmarks for simulation and stochastic optimization. This grant supports the Ph.D. concentration in financial engineering at Northwestern. This will result in training highly qualified researchers in financial engineering for academia and industry. The grant will also help the Department of Mathematical Sciences at the University of Nevada establish a research program in financial mathematics.
这笔赠款为金融工程高性能计算工具的开发提供资金。目标是开发计算方法来评估用于管理外汇、利率、股权、大宗商品、能源和信贷风险的复杂金融产品,管理资产组合,以及评估制造业的金融合同和设备租赁。该方法基于有限元方法在金融工程中的扩展,用于数值求解偏微分方程组。偏积分-微分方程解存在于马尔可夫跳跃扩散模型以及金融工程中的最优停止和随机控制问题中。有限元方法将应用于跳跃扩散过程,以开发计算工具,供金融服务业从业者以及金融工程、应用概率和运筹学研究人员使用。应用包括各种金融合约(股权和外汇期权、利率衍生品、商品合约和制造业设备租赁)的定价算法,以及考虑交易成本和交易限制的投资组合优化。如果成功,该项目开发的方法将帮助金融机构、制造和服务公司的公司金库以及能源公司准确评估复杂的金融工具,并有效地管理金融风险。该项目还将对使用连续时间马尔可夫过程的研究和应用领域产生更广泛的影响,如排队理论、库存控制、调度和制造中的重交通限制。关于估值、最优停止和随机控制问题的构造性逼近的结果也将有助于仿真和随机优化研究,为仿真和随机优化提供可靠的基准。这笔助学金支持西北大学金融工程博士学位的攻读。这将为学术界和工业界培养高素质的金融工程研究人员。这笔拨款还将帮助内华达大学数学科学系建立一个金融数学研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Marcozzi其他文献

Michael Marcozzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Marcozzi', 18)}}的其他基金

Collaborative Research: High-Performance Computational Methods for Continuous-Time Markov Processes in Financial Engineering
合作研究:金融工程中连续时间马尔可夫过程的高性能计算方法
  • 批准号:
    0223374
  • 财政年份:
    2002
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400166
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
  • 批准号:
    2403399
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
  • 批准号:
    2420369
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了