Novel Approaches to Mixed-Discrete and Nonconvex Programs: Polyhedral and Algebraic Methods
混合离散和非凸规划的新方法:多面体和代数方法
基本信息
- 批准号:0423415
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-15 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is to develop new methods, both theoretical and computational, for efficiently solving discrete-optimization problems. Though arising frequently in practice, such problems are extremely challenging due to their combinatorial nature; the solution space grows exponentially in terms of the number of decision variables. Effective procedures require cutting-edge theory coupled with high-speed computing. The approach used in this effort is to recast difficult problems into higher-variable spaces so as to partially avoid being encumbered by the exponential growth. A "reformulation-linearization-technique" (RLT) for programs wherein the discrete variables take binary "yes-no" values was earlier designed with this objective in mind. Computational successes have been realized for various classes of problems, and the idea of lifting lower-dimensional spaces into higher-dimensional counterparts has since drawn considerable attention. This research will blend contributions from the fields of Algebra and Operations Research to extend and enhance the entire RLT process in a novel manner. Preliminary studies show that the RLT generalizes to mixed-discrete problems, and that the arguments can be made more simple and elegant when viewed as special products of highly-structured matrices. This perspective provides valuable insights into reformulation methods, and opens up exciting new avenues for research. These avenues will be explored in depth.The research is expected to contribute to the solving of complex problems for which optimal solutions cannot currently be obtained and/or verified. Discrete problems are evident in many contexts, including electric power distribution, facility layout, resource allocation, and scheduling. The study should also contribute to the general understanding of the mathematical structure of special decision programs, and lead to improved methods for combinatorial problems in general.
本研究旨在开发新的方法,理论和计算,有效地解决离散优化问题。 虽然经常出现在实践中,这样的问题是极具挑战性的,由于其组合的性质;解决方案空间的决策变量的数量呈指数增长。 有效的程序需要尖端理论和高速计算。 在这一努力中使用的方法是重铸困难的问题到更高的变量空间,以部分避免被指数增长的阻碍。 一个“重新制定线性化技术”(RLT)的程序,其中离散变量采取二进制“是-否”的值是早期设计的这一目标铭记。 计算上的成功已经实现了各种类型的问题,并提升低维空间到高维对应的想法已经引起了相当大的关注。 这项研究将融合来自代数和运筹学领域的贡献,以一种新的方式扩展和增强整个RLT过程。 初步研究表明,RLT推广到混合离散问题,并认为参数可以更简单和优雅的高度结构化矩阵的特殊产品时,被视为。 这种观点提供了宝贵的见解重新制定的方法,并开辟了令人兴奋的新途径的研究。 将深入探讨这些途径,预计研究将有助于解决目前无法获得和/或验证最佳解决方案的复杂问题。 离散问题在许多情况下是显而易见的,包括电力分配,设施布局,资源分配和调度。 这项研究也应该有助于一般的理解的数学结构的特殊决策程序,并导致改进的方法,一般的组合问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Warren Adams其他文献
Convex hull characterizations of lexicographic orderings
- DOI:
10.1007/s10898-016-0435-3 - 发表时间:
2016-04-25 - 期刊:
- 影响因子:1.700
- 作者:
Warren Adams;Pietro Belotti;Ruobing Shen - 通讯作者:
Ruobing Shen
A conditional-logic interpretation for Miller–Tucker–Zemlin inequalities and extensions
Miller-Tucker-Zemlin 不等式和扩展的条件逻辑解释
- DOI:
10.1007/s11590-022-01947-w - 发表时间:
2022 - 期刊:
- 影响因子:1.6
- 作者:
Audrey Dietz;Warren Adams;Boshi Yang - 通讯作者:
Boshi Yang
Convex hull representations of special monomials of binary variables
- DOI:
10.1007/s11590-019-01400-5 - 发表时间:
2019-02-13 - 期刊:
- 影响因子:1.100
- 作者:
Audrey DeVries;Warren Adams;Boshi Yang - 通讯作者:
Boshi Yang
Characterizing linearizable QAPs by the level-1 reformulation-linearization technique
通过 1 级重构线性化技术表征线性化 QAP
- DOI:
10.1016/j.disopt.2023.100812 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lucas Waddell;Warren Adams - 通讯作者:
Warren Adams
Error bounds for monomial convexification in polynomial optimization
多项式优化中单项式凸化的误差界
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.7
- 作者:
Warren Adams;A. Gupte;Yibo Xu - 通讯作者:
Yibo Xu
Warren Adams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Warren Adams', 18)}}的其他基金
Collaborative Research: Reformulation-Linearization Technique for Discrete and Continuous Nonconvex Optimization with Applications
合作研究:离散和连续非凸优化的重构线性化技术及其应用
- 批准号:
0968909 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Learning from mpox: Community-Based Mixed Methods Research to Support Intersectional and Stigma-Informed Approaches to Pandemic Preparedness for Gay, Bisexual, Queer, and Other Men who Have Sex with Men in Canada
向 mpox 学习:基于社区的混合方法研究,支持针对加拿大同性恋、双性恋、酷儿和其他男男性行为者的流行病防范的跨部门和基于耻辱的方法
- 批准号:
481269 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
The epidemiology of Chagas disease in the UK: a mixed methods study to inform equitable and evidence-based approaches to migrant health screening
英国恰加斯病的流行病学:一项混合方法研究,为移民健康筛查提供公平和循证的方法
- 批准号:
MR/W016028/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fellowship
Novel Approaches for Mixed Circuit-Electromagnetic Design Automation Tools
混合电路电磁设计自动化工具的新方法
- 批准号:
RGPIN-2020-04416 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
New approaches for understanding group-specific phytoplankton photosynthesis in mixed populations
了解混合种群中特定群体浮游植物光合作用的新方法
- 批准号:
NE/X009742/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
A mixed-methods sequential explanatory study to examine the implementation landscape for evidence-based transdiagnostic approaches for mental disorders in primary healthcare in Ukraine.
一项混合方法序贯解释性研究,旨在检验乌克兰初级医疗保健中精神障碍循证跨诊断方法的实施情况。
- 批准号:
10295238 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Novel Approaches for Mixed Circuit-Electromagnetic Design Automation Tools
混合电路电磁设计自动化工具的新方法
- 批准号:
RGPIN-2020-04416 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
EFRI E3P: High-throughput synthetic biology approaches for mixed plastic degradation and reutilization
EFRI E3P:混合塑料降解和再利用的高通量合成生物学方法
- 批准号:
2132156 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
A mixed-methods sequential explanatory study to examine the implementation landscape for evidence-based transdiagnostic approaches for mental disorders in primary healthcare in Ukraine.
一项混合方法序贯解释性研究,旨在检验乌克兰初级医疗保健中精神障碍循证跨诊断方法的实施情况。
- 批准号:
10621896 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Novel Approaches for Mixed Circuit-Electromagnetic Design Automation Tools
混合电路电磁设计自动化工具的新方法
- 批准号:
RGPIN-2020-04416 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Mixed-Integer Programming Approaches for Risk-Averse Multicriteria Optimization
用于规避风险的多标准优化的混合整数规划方法
- 批准号:
1907463 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




