EFRI E3P: High-throughput synthetic biology approaches for mixed plastic degradation and reutilization
EFRI E3P:混合塑料降解和再利用的高通量合成生物学方法
基本信息
- 批准号:2132156
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The abundance of microorganisms found in nature, including both bacteria and fungi, is extremely diverse. Many of these microorganisms can degrade a variety of polymeric materials such as biomass and plastic waste. However, the few known microorganisms that can degrade plastics do so slowly. More efficient plastic-degrading microorganisms could be leveraged as industrial biotechnology to recycle waste plastic materials and create value-added products. In particular, the ability to biochemically recycle high-volume, difficult-to-recycle plastics like polystyrene and polyethylene would be an important step toward overcoming a mounting global environmental and health concern. The project team has recently isolated several promising bacterial and fungal strains that appear to degrade polystyrene and polyethylene. The multidisciplinary team will work together to decipher how these microorganisms degrade plastic waste and use this information to engineer bacterial cells to improve degradation efficiency. They will also utilize a mixture of different bacteria and fungi as a consortium to improve the plastic degradation efficiency, mimicking how microbes work together in nature to decompose complex materials. Finally, the plastic degradation products will be converted into high-value chemicals using novel engineered microorganisms. The proposed work will directly accelerate the research and development of microbe-driven plastic degradation and re-utilization and will address a critical national need for green technology through microbial bioproduction and biomanufacturing. The project will contribute to the training of next-generation researchers through exposure to multidisciplinary science and engineering at the high school and undergraduate levels. The team will also create online learning modules, presentations, and social network materials that will build partnerships between academia and the public to communicate and enhance the scientific awareness about the future of plastic waste and the potential for bioremediation.The project vision is to degrade mixed waste plastic and upcycle the degradation products into high-value chemical precursors using bacterial/fungal consortia and engineered bacterial consortia. The first aim is to identify the key plastic-degrading enzymes from individual microorganisms isolated from the enriched polyethylene- and polystyrene-degrading environmental bacterial/fungal consortia. The second aim is to create tailored synthetic fungal-bacterial consortia that can bio-augment mixed polyethylene/polystyrene degradation. The third aim is to develop engineered strains that produce a useful chemical precursor, 3-hydroxypropionic acid, and use these to create a synthetic consortium of plastic-degrading engineered microbes. Innovative high-throughput microfluidic technologies will be used to accelerate the discovery and testing processes. The project will yield new insights into the biochemistry of plastic degradation and conversion of plastic degradation products to high-value products, as well as significantly accelerate the development of next-generation bioremediation and green bioproduction technologies. In addition, the synthetic biology strategy, stable microbial consortia construction strategy, and high-throughput microfluidic platforms are expected to have broad appeal in the fields of synthetic biology, biomanufacturing, and biotechnology. The anticipated outcomes, focused here on polystyrene and polyethylene mixtures, are expected to pave the way for biochemical degradation and re-utilization of other complex plastic mixtures encountered in the real world.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在自然界中发现的微生物,包括细菌和真菌,是非常多样的。这些微生物中的许多可以降解各种聚合物材料,如生物质和塑料废物。然而,少数已知的能降解塑料的微生物降解速度很慢。更有效的塑料降解微生物可以作为工业生物技术来回收废塑料材料并创造增值产品。特别是,生物化学回收聚苯乙烯和聚乙烯等大容量、难以回收的塑料的能力将是克服日益严重的全球环境和健康问题的重要一步。该项目团队最近分离出了几种有希望的细菌和真菌菌株,它们似乎可以降解聚苯乙烯和聚乙烯。多学科团队将共同努力破译这些微生物如何降解塑料废物,并利用这些信息改造细菌细胞以提高降解效率。他们还将利用不同细菌和真菌的混合物作为财团来提高塑料降解效率,模仿微生物在自然界中如何共同分解复杂材料。最后,塑料降解产物将使用新型工程微生物转化为高价值的化学品。拟议的工作将直接加速微生物驱动的塑料降解和再利用的研究和开发,并将通过微生物生物生产和生物制造解决国家对绿色技术的关键需求。该项目将通过在高中和本科阶段接触多学科科学和工程,为培训下一代研究人员作出贡献。该团队还将创建在线学习模块、演示文稿和社交网络材料,以建立学术界和公众之间的伙伴关系,沟通和提高对塑料废物未来和生物修复潜力的科学认识。该项目的愿景是利用细菌/真菌财团和工程细菌财团降解混合废塑料,并将降解产物升级为高价值的化学前体。第一个目的是确定从富集的聚乙烯和聚苯乙烯降解环境细菌/真菌财团分离的单个微生物的关键塑料降解酶。第二个目标是创建定制的合成真菌-细菌联合体,其可以生物增强混合聚乙烯/聚苯乙烯降解。第三个目标是开发能产生有用的化学前体3-羟基丙酸的工程菌株,并使用这些菌株来创建塑料降解工程微生物的合成财团。创新的高通量微流体技术将用于加速发现和测试过程。该项目将为塑料降解的生物化学和塑料降解产物转化为高价值产品提供新的见解,并大大加快下一代生物修复和绿色生物生产技术的发展。此外,合成生物学策略、稳定的微生物菌群构建策略和高通量微流体平台预计将在合成生物学、生物制造和生物技术领域具有广泛的吸引力。预期成果主要集中在聚苯乙烯和聚乙烯混合物上,预计将为真实的世界中遇到的其他复杂塑料混合物的生化降解和再利用铺平道路。该奖项反映了NSF的法定使命,并且通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arum Han其他文献
Measurement of dielectric properties of cells at single-cell resolution using electrorotation
使用电旋转以单细胞分辨率测量细胞介电特性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.8
- 作者:
Yuwen Li;Can Huang;Song‐I Han;Arum Han - 通讯作者:
Arum Han
Acoustofluidic microdevice for precise control of pressure nodal positions
用于精确控制压力节点位置的声流控微型装置
- DOI:
10.1007/s10404-020-02356-0 - 发表时间:
2020 - 期刊:
- 影响因子:2.8
- 作者:
Sinan Yiğit;Han Wang;Song‐I Han;Younghak Cho;Arum Han - 通讯作者:
Arum Han
High-aspect-ratio three-dimensional polymer and metallic microstructure microfabrication using two-photon polymerization
- DOI:
10.1007/s10544-023-00665-z - 发表时间:
2023-07-29 - 期刊:
- 影响因子:3.300
- 作者:
Ethan Vargas;Can Huang;Zhiyu Yan;Harold White;Jun Zou;Arum Han - 通讯作者:
Arum Han
Changes in Subjective Discomfort, Blinking Rate, Lens Centration and the Light Transmittance of Lens Induced by Exceeding Use of Daily Disposable Circle Contact Lenses in Dry Eyes
干眼症过量佩戴日抛圆形隐形眼镜对主观不适感、眨眼次数、镜片居中度及镜片透光率的影响
- DOI:
10.14479/jkoos.2014.19.2.153 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Mijung Park;S. Kang;Jung Iee Chang;Arum Han;S. Kim - 通讯作者:
S. Kim
Worldline numerics applied to custom Casimir geometry generates unanticipated intersection with Alcubierre warp metric
应用于自定义卡西米尔几何体的世界线数值会与 Alcubierre 扭曲度量产生意外的交集
- DOI:
10.1140/epjc/s10052-021-09484-z - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
H. White;J. Vera;Arum Han;A. Bruccoleri;Jonathan V MacArthur - 通讯作者:
Jonathan V MacArthur
Arum Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arum Han', 18)}}的其他基金
IDBR: TYPE A - Microfluidic Fungal Transformation System for Ultra High-Throughput Functional Genomics
IDBR:A 型 - 用于超高通量功能基因组学的微流控真菌转化系统
- 批准号:
1353759 - 财政年份:2014
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI-PSBR: Microalgae Lab-on-Chip Photobioreactor Platform for Genetic Screening and Metabolic Analysis Leading to Scalable Biofuel Production
EFRI-PSBR:用于基因筛选和代谢分析的微藻片上实验室光生物反应器平台,可实现可扩展的生物燃料生产
- 批准号:
1240478 - 财政年份:2012
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似海外基金
EFRI E3P: Supercritical Extraction for the Elimination of End-of-Life Plastics (SCE3P)
EFRI E3P:超临界萃取消除报废塑料 (SCE3P)
- 批准号:
2132093 - 财政年份:2022
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: Hydrogenolysis for upcycling of polyesters and mixed plastics
EFRI E3P:用于聚酯和混合塑料升级改造的氢解
- 批准号:
2132033 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: GOALI: Waste Management and Circularity of Crosslinked Polyurethane Foams
EFRI E3P:GOALI:废物管理和交联聚氨酯泡沫的循环利用
- 批准号:
2132183 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: Nonthermal Plasma-Assisted Hydrogenolysis of Waste Plastics to Value-added Chemicals and Fuels
EFRI E3P:废塑料非热等离子体辅助氢解转化为增值化学品和燃料
- 批准号:
2132178 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
EFRI E3P: Tuning Catalyst Design to Recycle Mixed Polymer Streams
EFRI E3P:调整催化剂设计以回收混合聚合物流
- 批准号:
2029394 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: End of Life Plastics as Starting Materials for Filtration and Barrier Applications
EFRI E3P:报废塑料作为过滤和屏障应用的起始材料
- 批准号:
2029387 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: Program plastic lifecycle by rationally design enzyme-containing plastics
EFRI E3P:通过合理设计含酶塑料来规划塑料生命周期
- 批准号:
2132025 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: CAS: Transformative Upcycling of Polymers by Activating Chemistries
EFRI E3P:CAS:通过活化化学物质实现聚合物的转型升级循环
- 批准号:
2132133 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: Engineering Suspension Feeder Systems for Separation and Elimination of Microplastics from Water
EFRI E3P:用于分离和消除水中微塑料的工程悬浮给料系统
- 批准号:
2029428 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: A novel sequential catalytic solvolysis process for deconstructing municipal waste plastics
EFRI E3P:一种用于解构城市废塑料的新型连续催化溶剂分解工艺
- 批准号:
2132219 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant