Identification of Anomaly in Structures Based on Locally Controlled Dynamic Inputs
基于局部控制动态输入的结构异常识别
基本信息
- 批准号:0424141
- 负责人:
- 金额:$ 29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractCMS-0424141Chang, Fu-KuoStanford UniversityRapid and accurate detection of anomaly in structures while in service is major a challenge in engineering. Recent advances in sensor and smart materials technologies provide promising opportunities to overcome current time-consuming and labor-intensive inspection methods. The key to the success of the sensor-based technologies depends strongly on how the sensor measurements can be correlated with the physical quantity in terms of size and location of the anomaly. Although challenging, the mathematical complexity of the sensor-based systems becomes significantly reduced if the inputs to generate the data are well controlled. This leads to a fundamental mathematical issue: Given limited sensor data resulting from controlled inputs, identify local condition of an object.Therefore, an investigation is undertaken to develop a mathematical framework for detecting anomaly in structures using distributed sensor measurements generated from locally controlled dynamic excitations as well as appropriate algorithms to identify the location and size of the anomaly based on the measurements. Both analytical and experimental work will be conducted during the investigation. The major tasks to be performed for the study include: Diagnostic Signal Generation, Signal Interrogation and Interpretation, and Implementation and Verification. Although simple coupon tests will be used to verify the results, the mathematical framework is fundamental and shall allow engineers to explore new mathematical formulations for data interpretation of any complex systems. For instance, the framework could be applied to monitor fatigue cracks in aircraft structures, to detect corrosion cracks for underground pipelines, to provide early warning of incipient failure in spacecraft, or to interrogate the integrity of bridges or buildings after major quakes. Furthermore, the interrogation algorithms will provide useful tools for readily applying sensing and monitoring techniques for a broad range of engineering fields.This project is supported by CMS under the Math-Eng Interfacing Initiative.
快速准确地检测结构在使用中的异常是工程上的一个主要挑战。 传感器和智能材料技术的最新进展为克服当前耗时和劳动密集型的检测方法提供了有希望的机会。基于传感器的技术成功的关键在很大程度上取决于传感器测量如何与异常的大小和位置方面的物理量相关联。虽然具有挑战性,但如果生成数据的输入得到很好的控制,基于传感器的系统的数学复杂性将显著降低。这就引出了一个基本的数学问题:给定有限的传感器数据,从控制输入,识别局部条件的object.So,调查进行开发一个数学框架,用于检测结构中的异常使用分布式传感器测量产生的本地控制动态激励以及适当的算法,以确定位置和大小的异常的测量的基础上。调查期间将进行分析和实验工作。 本研究的主要任务包括:诊断信号生成、信号询问和解释以及实施和验证。虽然简单的试样测试将用于验证结果,数学框架是基本的,并应允许工程师探索新的数学公式的数据解释的任何复杂的系统。 例如,该框架可用于监测飞机结构的疲劳裂纹,检测地下管道的腐蚀裂纹,提供航天器早期故障的早期预警,或在大地震后询问桥梁或建筑物的完整性。 此外,询问算法将提供有用的工具,方便地将传感和监测技术应用于广泛的工程领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fu-Kuo Chang其他文献
Autoregressive model-based parameter correlation for state of charge and state of health of lithium-ion batteries using built-in piezoelectric transducer induced ultrasonic waves
基于自回归模型的锂离子电池荷电状态和健康状态参数相关性,采用内置压电传感器感应超声波
- DOI:
10.1016/j.est.2025.115829 - 发表时间:
2025-04-10 - 期刊:
- 影响因子:9.800
- 作者:
Shabbir Ahmed;Saman Farhangdoust;Fu-Kuo Chang - 通讯作者:
Fu-Kuo Chang
Thermo-mechanical properties of shape-recoverable structural composites via vacuum-assisted resin transfer molding process and in-situ polymerization of poly (emtert/em-butyl acrylate-co-acrylic acid) copolymer
通过真空辅助树脂传递模塑工艺和聚(乙交酯/丙烯酸丁酯-共-丙烯酸)共聚物的原位聚合制备形状可恢复结构复合材料的热机械性能
- DOI:
10.1016/j.compositesa.2024.108360 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:8.900
- 作者:
Jei Gyeong Jeon;Byeong Jun So;Yuseung Choi;Yusu Han;Taehoon Kim;Gilyong Shin;Ju Hwan Lee;Hyeong Jun Kim;Ju Hyeon Kim;Saman Farhangdoust;Fu-Kuo Chang;Minkook Kim;Min Wook Lee;Sungryul Yun;Tae June Kang - 通讯作者:
Tae June Kang
Fu-Kuo Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fu-Kuo Chang', 18)}}的其他基金
International Workshop on Structural Health Monitoring; Stanford, California; September 1-3, 2015
国际结构健康监测研讨会;
- 批准号:
1535835 - 财政年份:2015
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Bondline Integrity Monitoring of Adhesively Bonded Joints in Aircraft Structures
飞机结构中粘合接头的粘合线完整性监测
- 批准号:
1463577 - 财政年份:2015
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
NRI: Robust and Low-Cost Smart Skin with Active Sensing Network for Enhancing Human-Robot Interaction
NRI:具有主动传感网络的稳健且低成本的智能皮肤,可增强人机交互
- 批准号:
1528145 - 财政年份:2015
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
International Workshop on Structural Health Monitoring 2011; Stanford University, Palo Alto, California; 13-15 September 2011
2011年结构健康监测国际研讨会;
- 批准号:
1114786 - 财政年份:2011
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
International Workshop on Structural Health Monitoring 2009: Transformational Change on Health Management and Materials/Structures Design
2009 年结构健康监测国际研讨会:健康管理和材料/结构设计的转型变革
- 批准号:
0915210 - 财政年份:2009
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
International Workshop on Structural Health Monitoring 2007; held at Stanford Univ.; September 11-13, 2007
2007年结构健康监测国际研讨会;
- 批准号:
0738402 - 财政年份:2007
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
International Workshop on Structural Health Monitoring 2005
2005年结构健康监测国际研讨会
- 批准号:
0451213 - 财政年份:2005
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Air Force/Army/NSF Joint Workshop on "Multifunctional Materials and Structures"; October 29-30, 2004; Monterey, CA
空军/陆军/国家科学基金会“多功能材料与结构”联合研讨会;
- 批准号:
0450210 - 财政年份:2004
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
International Workshop on Structural Health Monitoring; September 15-17, 2003; Stanford, CA
国际结构健康监测研讨会;
- 批准号:
0315799 - 财政年份:2003
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Design of smart composite material system for civil infrastructure retrofit
民用基础设施改造智能复合材料系统设计
- 批准号:
0200399 - 财政年份:2002
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
相似海外基金
Situated Anomaly Detection in an Open Environment
在开放环境中进行异常检测
- 批准号:
FT230100121 - 财政年份:2024
- 资助金额:
$ 29万 - 项目类别:
ARC Future Fellowships
CAREER: Physics-informed Graph Learning for Anomaly Detection in Power Systems
职业:用于电力系统异常检测的物理信息图学习
- 批准号:
2338642 - 财政年份:2024
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Temporal Graph Mining for Anomaly Detection
用于异常检测的时间图挖掘
- 批准号:
DP240101547 - 财政年份:2024
- 资助金额:
$ 29万 - 项目类别:
Discovery Projects
Federated embedding models for privacy-preserving anomaly detection in bank transactions
用于银行交易中隐私保护异常检测的联合嵌入模型
- 批准号:
900260 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Collaborative R&D
Representation Learning for Deep Anomaly Detection
用于深度异常检测的表示学习
- 批准号:
23K11222 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Error Detection of Utterances for Non-native Speakers Using Deep Anomaly Detection Technology
使用深度异常检测技术对非母语人士的话语进行错误检测
- 批准号:
23K11238 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
ATD: Predictive Anomaly Detection for Spatio-Temporal Data with Multidimensional Persistence
ATD:具有多维持久性的时空数据的预测异常检测
- 批准号:
2220613 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2412329 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Investigation of the flavor anomaly problem by the world's highest luminosity accelerator experiment
全球最高光度加速器实验研究风味异常问题
- 批准号:
23H05433 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Grant-in-Aid for Scientific Research (S)